15 research outputs found

    Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Full text link

    Summaries of FY 1997 Research in the Chemical Sciences

    Get PDF
    The objective of this program is to expand, through support of basic research, knowledge of various areas of chemistry, physics and chemical engineering with a goal of contributing to new or improved processes for developing and using domestic energy resources in an efficient and environmentally sound manner. Each team of the Division of Chemical Sciences, Fundamental Interactions and Molecular Processes, is divided into programs that cover the various disciplines. Disciplinary areas where research is supported include atomic, molecular, and optical physics; physical, inorganic, and organic chemistry; chemical energy, chemical physics; photochemistry; radiation chemistry; analytical chemistry; separations science; heavy element chemistry; chemical engineering sciences; and advanced battery research. However, traditional disciplinary boundaries should not be considered barriers, and multi-disciplinary efforts are encouraged. In addition, the program supports several major scientific user facilities. The following summaries describe the programs

    Mass Transfer in Multiphase Systems and its Applications

    Get PDF
    This book covers a number of developing topics in mass transfer processes in multiphase systems for a variety of applications. The book effectively blends theoretical, numerical, modeling and experimental aspects of mass transfer in multiphase systems that are usually encountered in many research areas such as chemical, reactor, environmental and petroleum engineering. From biological and chemical reactors to paper and wood industry and all the way to thin film, the 31 chapters of this book serve as an important reference for any researcher or engineer working in the field of mass transfer and related topics

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis

    Innovative Materials and Systems for Solid State Hydrogen Storage

    Get PDF
    The research presented in this doctoral thesis concerns with the development of novel materials and systems for solid state hydrogen storage. The first group of works presented is on alkaline and alkaline-earth borohydrides. The possibility to enhance their properties with the help of nanosupports has been widely explored. An attempt to improve the dehydrogenation kinetics of lithium borohydride has been made dispersing this material on the surface of modified nanotubes and graphite. The resulting nanoconfined material displayed a decreased decomposition temperature in comparison with pure material and further decreasing was observed when the surface area of the supports was increased. An analogous experiment was performed to investigate this effect in combination with the assets of a reactive hydride composite, where two materials are mixed to obtain a compound with a lower decomposition enthalpy. The effect of the mixture was beneficial in presence of the support, due to lower temperature melting. For calcium borohydride an ordered mesoporous carbon was used after chemical activation. The increased properties of this support resulted in lower decomposition temperature and improved reversibility for a number of cycles at different pressure values. The second research line is focused on magnesium hydride. To improve its kinetic properties a zirconium-nickel alloy was investigated to evaluate its influence on the reaction rate, both in absorption and desorption. The degradation observed in experimental reactors, of different magnesium hydride powders catalyzed with a transition metal oxide, motivated the fabrication of pellets with the addition of a binding agent, to obtain mechanical resistance, still allowing hydrogen diffusion. Each pellet was supposed to behave as an independent system, so they were also tested in a small reactor. Several hydrogen absorption/desorption cycles were performed to compare the behaviour of the small reactor with the laboratory data obtained on smaller quantity of powdered and pelletized specimens. Finally, the feasibility of a vehicular hydrogen tank system was investigated using an interstitial metal hydride as storage material. Apart from material basic characterization, two different kinds of experiment were performed. Static tests (measurements with automatic flow control and constant settings) were used to evaluate wether the requirements for desorption are met by the tank set-up. Then, dynamic tests were designed and applied on the tank, where the hydrogen flow was fluctuating following a hypothetical on-road trial. It was possible to underline the heat management issues of high-demanding performances and to analyze some solutions for that. Different cycles were carried out on the tank to find the ideal setting for high average and peak flows in a realistic experiment

    The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts

    Get PDF
    The First Conference on materials science and engineering, including physics, physical chemistry, condensed matter chemistry, and technology in general, was held in September 1995, in Herceg Novi. An initiative to establish Yugoslav Materials Research Society was born at the conference and, similar to other MR societies in the world, the programme was made and objectives determined. The Yugoslav Materials Research Society (Yu-MRS), a nongovernment and non-profit scientific association, was founded in 1997 to promote multidisciplinary goal-oriented research in materials science and engineering. The main task and objective of the Society has been to encourage creativity in materials research and engineering to reach a harmonic coordination between achievements in this field in our country and analogous activities in the world with an aim to include our country into global international projects. Until 2003, Conferences were held every second year and then they grew into Annual Conferences that were traditionally held in Herceg Novi in September of every year. In 2007 Yu-MRS formed two new MRS: MRS-Serbia (official successor of Yu-MRS) and MRS-Montenegro (in founding). In 2008, MRS – Serbia became a member of FEMS (Federation of European Materials Societies)

    Ancient and historical systems

    Get PDF
    corecore