9,894 research outputs found

    Every Cloud Has a Push Data Lining: Incorporating Cloud Services in a Context-Aware Application

    Get PDF
    We investigated context-awareness by utilising multiple sources of context in a mobile device setting. In our experiment we developed a system consisting of a mobile client, running on the Android platform, integrated with a cloud-based service. These components were integrated using pushmessaging technology.One of the key featureswas the automatic adaptation of smartphones in accordance with implicit user needs. The novelty of our approach consists in the use of multiple sources of context input to the system, which included the use of calendar data and web based user configuration tool, as well as that of an external, cloud-based, configuration file storing user interface preferences which, pushed at log-on time irrespective of access device, frees the user from having to manually configure its interface.The systemwas evaluated via two rounds of user evaluations (n = 50 users), the feedback of which was generally positive and demonstrated the viability of using cloud-based services to provide an enhanced context-aware user experience

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Updated version of final design and of the architecture of SEAMLESS-IF

    Get PDF
    Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use, Livestock Production/Industries,

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Teenustele orienteeritud ja tõendite-teadlik mobiilne pilvearvutus

    Get PDF
    Arvutiteaduses on kaks kõige suuremat jõudu: mobiili- ja pilvearvutus. Kui pilvetehnoloogia pakub kasutajale keerukate ülesannete lahendamiseks salvestus- ning arvutusplatvormi, siis nutitelefon võimaldab lihtsamate ülesannete lahendamist mistahes asukohas ja mistahes ajal. Täpsemalt on mobiilseadmetel võimalik pilve võimalusi ära kasutades energiat säästa ning jagu saada kasvavast jõudluse ja ruumi vajadusest. Sellest tulenevalt on käesoleva töö peamiseks küsimuseks kuidas tuua pilveinfrastruktuur mobiilikasutajale lähemale? Antud töös uurisime kuidas mobiiltelefoni pilveteenust saab mobiilirakendustesse integreerida. Saime teada, et töö delegeerimine pilve eeldab mitmete pilve aspektide kaalumist ja integreerimist, nagu näiteks ressursimahukas töötlemine, asünkroonne suhtlus kliendiga, programmaatiline ressursside varustamine (Web APIs) ja pilvedevaheline kommunikatsioon. Nende puuduste ületamiseks lõime Mobiilse pilve vahevara Mobile Cloud Middleware (Mobile Cloud Middleware - MCM) raamistiku, mis kasutab deklaratiivset teenuste komponeerimist, et delegeerida töid mobiililt mitmetele pilvedele kasutades minimaalset andmeedastust. Teisest küljest on näidatud, et koodi teisaldamine on peamisi strateegiaid seadme energiatarbimise vähendamiseks ning jõudluse suurendamiseks. Sellegipoolest on koodi teisaldamisel miinuseid, mis takistavad selle laialdast kasutuselevõttu. Selles töös uurime lisaks, mis takistab koodi mahalaadimise kasutuselevõttu ja pakume lahendusena välja raamistiku EMCO, mis kogub seadmetelt infot koodi jooksutamise kohta erinevates kontekstides. Neid andmeid analüüsides teeb EMCO kindlaks, mis on sobivad tingimused koodi maha laadimiseks. Võrreldes kogutud andmeid, suudab EMCO järeldada, millal tuleks mahalaadimine teostada. EMCO modelleerib kogutud andmeid jaotuse määra järgi lokaalsete- ning pilvejuhtude korral. Neid jaotusi võrreldes tuletab EMCO täpsed atribuudid, mille korral mobiilirakendus peaks koodi maha laadima. Võrreldes EMCO-t teiste nüüdisaegsete mahalaadimisraamistikega, tõuseb EMCO efektiivsuse poolest esile. Lõpuks uurisime kuidas arvutuste maha laadimist ära kasutada, et täiustada kasutaja kogemust pideval mobiilirakenduse kasutamisel. Meie peamiseks motivatsiooniks, et sellist adaptiivset tööde täitmise kiirendamist pakkuda, on tagada kasutuskvaliteet (QoE), mis muutub vastavalt kasutajale, aidates seeläbi suurendada mobiilirakenduse eluiga.Mobile and cloud computing are two of the biggest forces in computer science. While the cloud provides to the user the ubiquitous computational and storage platform to process any complex tasks, the smartphone grants to the user the mobility features to process simple tasks, anytime and anywhere. Smartphones, driven by their need for processing power, storage space and energy saving are looking towards remote cloud infrastructure in order to solve these problems. As a result, the main research question of this work is how to bring the cloud infrastructure closer to the mobile user? In this thesis, we investigated how mobile cloud services can be integrated within the mobile apps. We found out that outsourcing a task to cloud requires to integrate and consider multiple aspects of the clouds, such as resource-intensive processing, asynchronous communication with the client, programmatically provisioning of resources (Web APIs) and cloud intercommunication. Hence, we proposed a Mobile Cloud Middleware (MCM) framework that uses declarative service composition to outsource tasks from the mobile to multiple clouds with minimal data transfer. On the other hand, it has been demonstrated that computational offloading is a key strategy to extend the battery life of the device and improves the performance of the mobile apps. We also investigated the issues that prevent the adoption of computational offloading, and proposed a framework, namely Evidence-aware Mobile Computational Offloading (EMCO), which uses a community of devices to capture all the possible context of code execution as evidence. By analyzing the evidence, EMCO aims to determine the suitable conditions to offload. EMCO models the evidence in terms of distributions rates for both local and remote cases. By comparing those distributions, EMCO infers the right properties to offload. EMCO shows to be more effective in comparison with other computational offloading frameworks explored in the state of the art. Finally, we investigated how computational offloading can be utilized to enhance the perception that the user has towards an app. Our main motivation behind accelerating the perception at multiple response time levels is to provide adaptive quality-of-experience (QoE), which can be used as mean of engagement strategy that increases the lifetime of a mobile app
    corecore