158,161 research outputs found

    High temperature cyclic oxidation furnace testing at NASA Lewis Research Center

    Get PDF
    A standardized method of testing the cyclic oxidation resistance of various alloys in static air to 1200 C was developed and is routinely used at NASA Lewis Research Center. Test samples are automatically raised and lowered into a resistance wound furnace for a series of fixed interval heating and cooling cycles. Spall catchers collect the accumulated spall from each sample. The samples are weighed intermittently to generate specific weight change/time data. At various test times the samples and the accumulated spall are analyzed by X-ray diffraction. A computer program uses this gravimetric and X-ray data as input to print out the oxidation curves and specific weight change/time and X-ray results in a published format, organizes, and indexes the data. So far, several hundred Fe, Ni, and Co base alloys were tested using this same basic procedure and results form the basis of a series of cyclic oxidation handbooks to be published by NASA. Such specific weight change/time data were used to estimate the oxidative metal consumption by several computer modeling techniques to rank alloys and for use in life testing estimates

    Combustor liner durability analysis

    Get PDF
    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed

    Continuous Thermogravimetry under Cyclic Conditions

    Get PDF
    Thermogravimetry during cyclic oxidation of metallic alloys is described. A methodology is given in order to determine the Net Mass Gain, the GrossMass Gain, the total mass of spalled oxide, the rate of metal consumption and the average oxide scale thickness as a function of the number of cycles. The fraction of oxide scale which spalls at each cycle can be also calculated, and the parabolic constant can be estimated at each cycle. Two examples are given: the cyclic oxidation of a NiAl single crystal in flowing oxygen at 1150xC, and the cyclic oxidation of alloy P91 at 800xC in laboratory air. Advantages and disadvantages of this technique are discussed in regards to classical interrupted tests in crucibles. Thermogravimetry during cyclic oxidation appears to be a powerful tool in order to model and quantify the cyclic oxidation test which is of great interest in order to qualify the resistance of materials to oxidation in conditions close to their actual use, but a specific aspparatus need to be developed in order to obtain data in an efficient and economical manner. A new apparatus designed for this purpose is described briefly

    Management of the technical training process of athletes in cycling sports

    Get PDF
    In cyclic sports, the main indicator that characterizes adversarial activity is the average speed of passing distances. The presence of functional dependencies of speed factors on various indicators of sports activity can determine its dynamics. It allows to simulate the process of competitive activity, and according to the dynamics of speed, to determine the nature of a particular indicator. Cyclists and swimmers defined law of motion, the dependence of the athlete's instantaneous speed and its acceleration ontime, applied forces, resistance forces and forces of inertia, as well as on specific physical and morphological data. The presence of a mathematical model allows us to create an adaptive system for controlling the technical preparedness of athletes in cyclic sports
    corecore