1,471 research outputs found

    Modeling Cooperative Navigation in Dense Human Crowds

    Full text link
    For robots to be a part of our daily life, they need to be able to navigate among crowds not only safely but also in a socially compliant fashion. This is a challenging problem because humans tend to navigate by implicitly cooperating with one another to avoid collisions, while heading toward their respective destinations. Previous approaches have used hand-crafted functions based on proximity to model human-human and human-robot interactions. However, these approaches can only model simple interactions and fail to generalize for complex crowded settings. In this paper, we develop an approach that models the joint distribution over future trajectories of all interacting agents in the crowd, through a local interaction model that we train using real human trajectory data. The interaction model infers the velocity of each agent based on the spatial orientation of other agents in his vicinity. During prediction, our approach infers the goal of the agent from its past trajectory and uses the learned model to predict its future trajectory. We demonstrate the performance of our method against a state-of-the-art approach on a public dataset and show that our model outperforms when predicting future trajectories for longer horizons.Comment: Accepted at ICRA 201

    Social Attention: Modeling Attention in Human Crowds

    Full text link
    Robots that navigate through human crowds need to be able to plan safe, efficient, and human predictable trajectories. This is a particularly challenging problem as it requires the robot to predict future human trajectories within a crowd where everyone implicitly cooperates with each other to avoid collisions. Previous approaches to human trajectory prediction have modeled the interactions between humans as a function of proximity. However, that is not necessarily true as some people in our immediate vicinity moving in the same direction might not be as important as other people that are further away, but that might collide with us in the future. In this work, we propose Social Attention, a novel trajectory prediction model that captures the relative importance of each person when navigating in the crowd, irrespective of their proximity. We demonstrate the performance of our method against a state-of-the-art approach on two publicly available crowd datasets and analyze the trained attention model to gain a better understanding of which surrounding agents humans attend to, when navigating in a crowd

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    Robot navigation in dense human crowds: Statistical models and experimental studies of human–robot cooperation

    Get PDF
    We consider the problem of navigating a mobile robot through dense human crowds. We begin by exploring a fundamental impediment to classical motion planning algorithms called the “freezing robot problem”: once the environment surpasses a certain level of dynamic complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. We argue that this problem can be avoided if the robot anticipates human cooperation, and accordingly we develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a “multiple goal” extension that models the goal-driven nature of human decision making. We validate this model with an empirical study of robot navigation in dense human crowds (488 runs), specifically testing how cooperation models effect navigation performance. The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 0.8 humans/m^2, while a state-of-the-art non-cooperative planner exhibits unsafe behavior more than three times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m^2. We also show that our non-cooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    Dynamic Objects Segmentation for Visual Localization in Urban Environments

    Full text link
    Visual localization and mapping is a crucial capability to address many challenges in mobile robotics. It constitutes a robust, accurate and cost-effective approach for local and global pose estimation within prior maps. Yet, in highly dynamic environments, like crowded city streets, problems arise as major parts of the image can be covered by dynamic objects. Consequently, visual odometry pipelines often diverge and the localization systems malfunction as detected features are not consistent with the precomputed 3D model. In this work, we present an approach to automatically detect dynamic object instances to improve the robustness of vision-based localization and mapping in crowded environments. By training a convolutional neural network model with a combination of synthetic and real-world data, dynamic object instance masks are learned in a semi-supervised way. The real-world data can be collected with a standard camera and requires minimal further post-processing. Our experiments show that a wide range of dynamic objects can be reliably detected using the presented method. Promising performance is demonstrated on our own and also publicly available datasets, which also shows the generalization capabilities of this approach.Comment: 4 pages, submitted to the IROS 2018 Workshop "From Freezing to Jostling Robots: Current Challenges and New Paradigms for Safe Robot Navigation in Dense Crowds
    • …
    corecore