2,211 research outputs found

    Sequence-based Multiscale Model (SeqMM) for High-throughput chromosome conformation capture (Hi-C) data analysis

    Full text link
    In this paper, I introduce a Sequence-based Multiscale Model (SeqMM) for the biomolecular data analysis. With the combination of spectral graph method, I reveal the essential difference between the global scale models and local scale ones in structure clustering, i.e., different optimization on Euclidean (or spatial) distances and sequential (or genomic) distances. More specifically, clusters from global scale models optimize Euclidean distance relations. Local scale models, on the other hand, result in clusters that optimize the genomic distance relations. For a biomolecular data, Euclidean distances and sequential distances are two independent variables, which can never be optimized simultaneously in data clustering. However, sequence scale in my SeqMM can work as a tuning parameter that balances these two variables and deliver different clusterings based on my purposes. Further, my SeqMM is used to explore the hierarchical structures of chromosomes. I find that in global scale, the Fiedler vector from my SeqMM bears a great similarity with the principal vector from principal component analysis, and can be used to study genomic compartments. In TAD analysis, I find that TADs evaluated from different scales are not consistent and vary a lot. Particularly when the sequence scale is small, the calculated TAD boundaries are dramatically different. Even for regions with high contact frequencies, TAD regions show no obvious consistence. However, when the scale value increases further, although TADs are still quite different, TAD boundaries in these high contact frequency regions become more and more consistent. Finally, I find that for a fixed local scale, my method can deliver very robust TAD boundaries in different cluster numbers.Comment: 22 PAGES, 13 FIGURE

    Analysis of Three-Dimensional Protein Images

    Full text link
    A fundamental goal of research in molecular biology is to understand protein structure. Protein crystallography is currently the most successful method for determining the three-dimensional (3D) conformation of a protein, yet it remains labor intensive and relies on an expert's ability to derive and evaluate a protein scene model. In this paper, the problem of protein structure determination is formulated as an exercise in scene analysis. A computational methodology is presented in which a 3D image of a protein is segmented into a graph of critical points. Bayesian and certainty factor approaches are described and used to analyze critical point graphs and identify meaningful substructures, such as alpha-helices and beta-sheets. Results of applying the methodologies to protein images at low and medium resolution are reported. The research is related to approaches to representation, segmentation and classification in vision, as well as to top-down approaches to protein structure prediction.Comment: See http://www.jair.org/ for any accompanying file

    Bayesian models and algorithms for protein beta-sheet prediction

    Get PDF
    Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent accessibility, and non-local contacts that stabilize a protein's structure. Prediction of such components is vital to our understanding of the structure and function of a protein. In this paper, we address the problem of beta-sheet prediction. We introduce a Bayesian approach for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework. To select the optimum architecture, we analyze the space of possible conformations by efficient heuristics. Furthermore, we employ an algorithm that finds the optimum pairwise alignment between beta-strands using dynamic programming. Allowing any number of gaps in an alignment enables us to model beta-bulges more effectively. Though our main focus is proteins with six or less beta-strands, we are also able to perform predictions for proteins with more than six beta-strands by combining the predictions of BetaPro with the gapped alignment algorithm. We evaluated the accuracy of our method and BetaPro. We performed a 10-fold cross validation experiment on the BetaSheet916 set and we obtained significant improvements in the prediction accuracy

    Integrative modelling of cellular assemblies

    Get PDF
    A wide variety of experimental techniques can be used for understanding the precise molecular mechanisms underlying the activities of cellular assemblies. The inherent limitations of a single experimental technique often requires integration of data from complementary approaches to gain sufficient insights into the assembly structure and function. Here, we review popular computational approaches for integrative modelling of cellular assemblies, including protein complexes and genomic assemblies. We provide recent examples of integrative models generated for such assemblies by different experimental techniques, especially including data from 3D electron microscopy (3D-EM) and chromosome conformation capture experiments, respectively. We highlight general concepts in integrative modelling and discuss the need for careful formulation and merging of different types of information
    corecore