40,573 research outputs found

    Interaction Embeddings for Prediction and Explanation in Knowledge Graphs

    Full text link
    Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.Comment: This paper is accepted by WSDM201

    Modeling Relation Paths for Representation Learning of Knowledge Bases

    Full text link
    Representation learning of knowledge bases (KBs) aims to embed both entities and relations into a low-dimensional space. Most existing methods only consider direct relations in representation learning. We argue that multiple-step relation paths also contain rich inference patterns between entities, and propose a path-based representation learning model. This model considers relation paths as translations between entities for representation learning, and addresses two key challenges: (1) Since not all relation paths are reliable, we design a path-constraint resource allocation algorithm to measure the reliability of relation paths. (2) We represent relation paths via semantic composition of relation embeddings. Experimental results on real-world datasets show that, as compared with baselines, our model achieves significant and consistent improvements on knowledge base completion and relation extraction from text.Comment: 10 page

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201

    Modeling relation paths for knowledge base completion via joint adversarial training

    Full text link
    Knowledge Base Completion (KBC), which aims at determining the missing relations between entity pairs, has received increasing attention in recent years. Most existing KBC methods focus on either embedding the Knowledge Base (KB) into a specific semantic space or leveraging the joint probability of Random Walks (RWs) on multi-hop paths. Only a few unified models take both semantic and path-related features into consideration with adequacy. In this paper, we propose a novel method to explore the intrinsic relationship between the single relation (i.e. 1-hop path) and multi-hop paths between paired entities. We use Hierarchical Attention Networks (HANs) to select important relations in multi-hop paths and encode them into low-dimensional vectors. By treating relations and multi-hop paths as two different input sources, we use a feature extractor, which is shared by two downstream components (i.e. relation classifier and source discriminator), to capture shared/similar information between them. By joint adversarial training, we encourage our model to extract features from the multi-hop paths which are representative for relation completion. We apply the trained model (except for the source discriminator) to several large-scale KBs for relation completion. Experimental results show that our method outperforms existing path information-based approaches. Since each sub-module of our model can be well interpreted, our model can be applied to a large number of relation learning tasks.Comment: Accepted by Knowledge-Based System
    • …
    corecore