6,414 research outputs found

    Interaction of Seed Dispersal and Environmental Filtering Affects Woody Encroachment Patterns in Coastal Grassland

    Get PDF
    Encroachment of woody plants into grasslands has occurred worldwide and includes coastal ecosystems. This conversion process is mediated by seed dispersal patterns, environmental filtering, and biotic interactions. As spatiotemporally heterogeneous, harsh environments, barrier islands present a unique set of challenges for dispersal and establishment. Environmental conditions act as filters on dispersed seeds, thereby influencing encroachment and distribution patterns. Seldom have patterns of propagule dispersal been considered in the context of woody encroachment. We quantified dispersal and post‐dispersal processes of an encroaching woody population of Morella cerifera relative to directional rate of encroachment and observed distribution patterns on an Atlantic coastal barrier island with strong environmental filtering. We analyzed historic foredune elevation as a proxy for reduced interior environmental stress. The dispersal kernel was leptokurtic, a common characteristic of expanding populations, but rate of encroachment has slowed since 2005. Expansion pattern was related to foredune elevation, which limits encroachment below a threshold elevation. This difference between dispersal kernel behavior and encroachment rate is due to limited availability of suitable habitat for Morella and temporal variability in chlorides during the time of germination. Our results demonstrate that processes mediating seeds and seedling success must be accounted for to better understand establishment patterns of encroaching woody plants

    Effects of sea-level rise on barrier island groundwater system dynamics – ecohydrological implications

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Ecohydrology 7 (2014): 1064–1071, doi:10.1002/eco.1442.We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA

    Tidal hydrodynamic response to sea level rise and coastal geomorphology in the Northern Gulf of Mexico

    Get PDF
    Sea level rise (SLR) has the potential to affect coastal environments in a multitude of ways, including submergence, increased flooding, and increased shoreline erosion. Low-lying coastal environments such as the Northern Gulf of Mexico (NGOM) are particularly vulnerable to the effects of SLR, which may have serious consequences for coastal communities as well as ecologically and economically significant estuaries. Evaluating potential changes in tidal hydrodynamics under SLR is essential for understanding impacts to navigation, ecological habitats, infrastructure and the morphologic evolution of the coastline. The intent of this research is to evaluate the dynamic effects of SLR and coastal geomorphology on tidal hydrodynamics along the NGOM and within three National Estuarine Research Reserves (NERRs), namely Grand Bay, MS, Weeks Bay, AL, and Apalachicola, FL. An extensive literature review examined the integrated dynamic effects of SLR on low gradient coastal landscapes, primarily in the context of hydrodynamics, coastal morphology, and marsh ecology. Despite knowledge of the dynamic nature of coastal systems, many studies have neglected to consider the nonlinear effects of SLR and employed a simplistic bathtub approach in SLR assessments. More recent efforts have begun to consider the dynamic effects of SLR (e.g., the nonlinear response of hydrodynamics under SLR); however, little research has considered the integrated feedback mechanisms and co-evolution of multiple interdependent systems (e.g., the nonlinear responses and interactions of hydrodynamics and coastal morphology under SLR). Synergetic approaches that integrate the dynamic interactions between physical and ecological environments will allow for more comprehensive evaluations of the impacts of SLR on coastal systems. Projecting future morphology is a challenging task; various conceptual models and statistical methods have been employed to project future shoreline positions. Projected shoreline change rates from a conceptual model were compared with historic shoreline change rates from two databases along sandy shorelines of the. South Atlantic Bight and NGOM coasts. The intent was not to regard one method as superior to another, but rather to explore similarities and differences between the methods and offer suggestions for projecting shoreline changes in SLR assessments. The influence of incorporating future shoreline changes into hydrodynamic modeling assessments of SLR was evaluated for the NGOM coast. Astronomic tides and hurricane storm surge were simulated under present conditions, the projected 2050 sea level with present-day shorelines, and the projected 2050 sea level with projected 2050 shorelines. Results demonstrated that incorporating shoreline changes had variable impacts on the hydrodynamics; storm surge was more sensitive to the shoreline changes than astronomic tides. It was concluded that estimates of shoreline change should be included in hydrodynamic assessments of SLR along the NGOM. Evaluating how hydrodynamics have been altered historically under a changing landscape in conjunction with SLR can provide insight to future changes. The Grand Bay estuary has undergone significant landscape changes historically. Tidal hydrodynamics were simulated for present and historic conditions (dating back to 1848) using a hydrodynamic model modified with unique sea levels, bathymetry, topography, and shorelines representative of each time period. Changes in tidal amplitudes varied across the domain. Harmonic constituent phases sped up from historic conditions. Tidal velocities in the estuary were stronger historically, and reversed from being flood dominant in 1848 to ebb dominant in 2005. To project how tidal hydrodynamics may be altered under future scenarios along the NGOM and within the three NERRs, a hydrodynamic model was used to simulate present (circa 2005) and future (circa 2050 and 2100) astronomic tides. The model was modified with projections of future sea levels as well as shoreline positions and dune elevations obtained from a Bayesian network (BN) model. Tidal amplitudes within some of the embayments increased under the higher SLR scenarios; there was a high correlation between the change in the inlet cross-sectional area under SLR and the change in the tidal amplitude within each bay. Changes in harmonic constituent phases indicated faster tidal propagation in the future scenarios within most of the bays. Tidal velocities increased in all of the NERRs which altered flood and ebb current strengths. The work presented herein improves the understanding of the response of tidal hydrodynamics to morphology and SLR. This is beneficial not only to the scientific community, but also to the management and policy community. These findings will have synergistic effects with a variety of coastal studies including storm surge and biological assessments of SLR. In addition, findings can benefit monitoring and restoration activities in the NERRs. Ultimately, outcomes will allow coastal managers and policy makers to make more informed decisions that address specific needs and vulnerabilities of each particular estuary, the NGOM coastal system, and estuaries elsewhere with similar conditions

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future
    • 

    corecore