118 research outputs found

    Modeling active electrolocation in weakly electric fish

    Full text link
    In this paper, we provide a mathematical model for the electrolocation in weakly electric fishes. We first investigate the forward complex conductivity problem and derive the approximate boundary conditions on the skin of the fish. Then we provide a dipole approximation for small targets away from the fish. Based on this approximation, we obtain a non-iterative location search algorithm using multi-frequency measurements. We present numerical experiments to illustrate the performance and the stability of the proposed multi-frequency location search algorithm. Finally, in the case of disk- and ellipse-shaped targets, we provide a method to reconstruct separately the conductivity, the permittivity, and the size of the targets from multi-frequency measurements.Comment: 37 pages, 11 figure

    Shape recognition and classification in electro-sensing

    Full text link
    This paper aims at advancing the field of electro-sensing. It exhibits the physical mechanism underlying shape perception for weakly electric fish. These fish orient themselves at night in complete darkness by employing their active electrolocation system. They generate a stable, high-frequency, weak electric field and perceive the transdermal potential modulations caused by a nearby target with different admittivity than the surrounding water. In this paper, we explain how weakly electric fish might identify and classify a target, knowing by advance that the latter belongs to a certain collection of shapes. Our model of the weakly electric fish relies on differential imaging, i.e., by forming an image from the perturbations of the field due to targets, and physics-based classification. The electric fish would first locate the target using a specific location search algorithm. Then it could extract, from the perturbations of the electric field, generalized (or high-order) polarization tensors of the target. Computing, from the extracted features, invariants under rigid motions and scaling yields shape descriptors. The weakly electric fish might classify a target by comparing its invariants with those of a set of learned shapes. On the other hand, when measurements are taken at multiple frequencies, the fish might exploit the shifts and use the spectral content of the generalized polarization tensors to dramatically improve the stability with respect to measurement noise of the classification procedure in electro-sensing. Surprisingly, it turns out that the first-order polarization tensor at multiple frequencies could be enough for the purpose of classification. A procedure to eliminate the background field in the case where the permittivity of the surrounding medium can be neglected, and hence improve further the stability of the classification process, is also discussed.Comment: 10 pages, 15 figure

    Electrocommunication for weakly electric fish

    Full text link
    This paper addresses the problem of the electro-communication for weakly electric fish. In particular we aim at sheding light on how the fish circumvent the jamming issue for both electro-communication and active electro-sensing. A real-time tracking algorithm is presented

    First results on a sensor bio-inspired by electric fish

    Get PDF
    This article presents the first results of a work which aims at designing an active sensor inspired by the electric fish. Its interest is its potential for robotics underwater navigation and exploration tasks in conditions where vision and sonar would meet difficulty. It could also be used as a complementary omnidirectional, short range sense to vision and sonar. Combined with a well defined engine geometry, this sensor can be modeled analytically. In this article, we focus on a particular measurement mode where one electrode of the sensor acts as a current emitter and the others as current receivers. In spite of the high sensitivity required by electric sense, the first results show that we can obtain a detection range of the order of the sensor length, which suggests that this sensor principle could be used in future for robotics obstacle avoidance

    Fish Geometry and Electric Organ Discharge Determine Functional Organization of the Electrosensory Epithelium

    Get PDF
    Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally

    Spatial Acuity and Prey Detection in Weakly Electric Fish

    Get PDF
    It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals
    corecore