2,465 research outputs found

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    Access Time Minimization in IEEE 1687 Networks

    Get PDF
    IEEE 1687 enables flexible access to the embedded (on-chip) instruments that are needed for post-silicon validation, debugging, wafer sort, package test, burn-in, printed circuit board bring-up, printed circuit board assembly manufacturing test, power-on self-test, and in-field test. At any of these scenarios, the instruments are accessed differently, and at a given scenario the instruments are accessed differently over time. It means the IEEE 1687 network needs to be frequently reconfigured from accessing one set of instruments to accessing a different set of instruments. Due to the need of frequent reconfiguration of the IEEE 1687 network it is important to (1) minimize the run-time for the algorithm finding the new reconfiguration, and (2) generate scan vectors with minimized access time. In this paper we model the reconfiguration problem using Boolean Satisfiability Problem (SAT). Compared to previous works we show significant reduction in run-time and we ensure minimal access time for the generated scan vectors

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks

    A New Technique to Generate Test Sequences for Reconfigurable Scan Networks

    Get PDF
    Nowadays, industries require reliable methods for accessing the instrumentations embedded within semiconductor devices. The situation led to the definition of standards, such as the IEEE 1687, for designing the required infrastructures, and the proposal of techniques to test them. So far, most of the test-generation approaches are either too computationally demanding to be applied in complex cases, or too approximate to yield high-quality tests. This paper exploits a recent idea: the state of a generic reconfigurable scan chain is modeled as a finite state automaton and a low-level fault, as an incorrect transition; it then proposes a new algorithm for generating a functional test sequence able to detect all incorrect transitions far more efficiently than previous ones. Such an algorithm is based on a greedy search, and it is able to postpone costly operations and eventually minimize their number. Experimental results on ITC’16 benchmarks demonstrate that the proposed approach is broadly applicable; has limited computational requirements; and the test sequences are order of magnitudes shorter than the ones previously generated by approximate methodologies

    A Novel Sequence Generation Approach to Diagnose Faults in Reconfigurable Scan Networks

    Get PDF
    With the complexity of nanoelectronic devices rapidly increasing, an efficient way to handle large number of embedded instruments became a necessity. The IEEE 1687 standard was introduced to provide flexibility in accessing and controlling such instrumentation through a reconfigurable scan chain. Nowadays, together with testing the system for defects that may affect the scan chains themselves, the diagnosis of such faults is also important. This article proposes a method for generating stimuli to precisely identify permanent high-level faults in a IEEE 1687 reconfigurable scan chain: the system is modeled as a finite state automaton where faults correspond to multiple incorrect transitions; then, a dynamic greedy algorithm is used to select a sequence of inputs able to distinguish between all possible faults. Experimental results on the widely-adopted ITC'02 and ITC'16 benchmark suites, as well as on synthetically generated circuits, clearly demonstrate the applicability and effectiveness of the proposed approach: generated sequences are two orders of magnitude shorter compared to previous methodologies, while the computational resources required remain acceptable even for larger benchmarks

    A Survey on Security Threats and Countermeasures in IEEE Test Standards

    Get PDF
    International audienceEditor's note: Test infrastructure has been shown to be a portal for hackers. This article reviews the threats and countermeasures for IEEE test infrastructure standards

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities
    • …
    corecore