38 research outputs found

    Evaluating Small Airways Disease in Asthma and COPD using the Forced Oscillation Technique and Magnetic Resonance Imaging

    Get PDF
    Obstructive lung disease, including asthma and chronic obstructive pulmonary disease (COPD), is characterized by heterogeneous ventilation. Unfortunately, the underlying structure-function relationships and the relationships between measurements of heterogeneity and patient quality-of-life in obstructive lung disease are not well understood. Hyperpolarized noble gas MRI is used to visualize and quantify ventilation distribution and the forced oscillation technique (FOT) applies a multi-frequency pressure oscillation at the mouth to measure respiratory impedance to airflow (including resistance and reactance). My objective was to use FOT, ventilation MRI and computational airway tree modeling to better understand ventilation heterogeneity in asthma and COPD. FOT-measured respiratory system impedance was correlated with MRI ventilation heterogeneity and both were related to quality-of-life in asthma and COPD. FOT-measurements and model-predictions of reactance and small-airways resistance were correlated in asthma and COPD respectively. This study is the first to demonstrate the relationships between FOT-measured impedance, MRI ventilation heterogeneity, and patient quality-of-life

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Structure and Function of Asthma Evaluated Using Pulmonary Imaging

    Get PDF
    Asthma has been understood to affect the airways in a spatially heterogeneous manner for over six decades. Computational models of the asthmatic lung have suggested that airway abnormalities are diffusely and randomly distributed throughout the lung, however these mechanisms have been challenging to measure in vivo using current clinical tools. Pulmonary structure and function are still clinically characterized by the forced expiratory volume in one-second (FEV1) – a global measurement of airflow obstruction that is unable to capture the underlying regional heterogeneity that may be responsible for symptoms and disease worsening. In contrast, pulmonary magnetic resonance imaging (MRI) provides a way to visualize and quantify regional heterogeneity in vivo, and preliminary MRI studies in patients suggest that airway abnormalities in asthma are spatially persistent and not random. Despite these disruptive results, imaging has played a limited clinical role because the etiology of ventilation heterogeneity in asthma and its long-term pattern remain poorly understood. Accordingly, the objective of this thesis was to develop a deeper understanding of the pulmonary structure and function of asthma using functional MRI in conjunction with structural computed tomography (CT) and oscillometry, to provide a foundation for imaging to guide disease phenotyping, personalized treatment and prediction of disease worsening. We first evaluated the biomechanics of ventilation heterogeneity and showed that MRI and oscillometry explained biomechanical differences between asthma and other forms of airways disease. We then evaluated the long-term spatial and temporal nature of airway and ventilation abnormalities in patients with asthma. In nonidentical twins, we observed a spatially-matched CT airway and MRI ventilation abnormality that persisted for seven-years; we estimated the probability of an identical defect occurring in time and space to be 1 in 130,000. In unrelated asthmatics, ventilation defects were spatially-persistent over 6.5-years and uniquely predicted longitudinal bronchodilator reversibility. Finally, we investigated the entire CT airway tree and showed that airways were truncated in severe asthma related to thickened airway walls and worse MRI ventilation heterogeneity. Together, these results advance our understanding of asthma as a non-random disease and support the use of MRI ventilation to guide clinical phenotyping and treatment decisions

    Towards an Efficient Gas Exchange Monitoring with Electrical Impedance Tomography - Optimization and validation of methods to investigate and understand pulmonary blood flow with indicator dilution

    Get PDF
    In vielen Fällen sind bei Patienten, die unter stark gestörtem Gasaustausch der Lunge leiden, die regionale Lungenventilation und die Perfusion nicht aufeinander abgestimmt. Besonders bei Patienten mit akutem Lungenversagen sind sehr heterogene räumliche Verteilungen von Belüftung und Perfusion der Lunge zu beobachten. Diese Patienten müssen auf der Intensivstation künstlich beatmet und überwacht werden, um einen ausreichenden Gasaustausch sicherzustellen. Bei schweren Lungenverletzungen ist es schwierig, durch die Anwendung hoher Beatmungsdrücke und -volumina eine optimale Balance zwischen dem Rekrutieren kollabierter Regionen zu finden, und gleichzeitig die Lunge vor weiterem Schaden durch die von außen angelegten Drücke zu schützen. Das Interesse für eine bettseitige Messung und Darstellung der regionalen Belüftungs- und Perfusionsverteilung für den Einsatz auf der Intensivstation ist in den letzten Jahren stark gestiegen, um eine lungenprotektive Beatmung zu ermöglichen und klinische Diagnosen zu vereinfachen. Die Elektrische-Impedanztomographie (EIT) ist ein nicht-invasives, strahlungsfreies und sehr mobil einsetzbares System. Es bietet eine hohe zeitliche Abtastung und eine funktionelle räumliche Auflösung, die es ermöglicht, dynamische (patho-) physiologische Prozesse zu visualisieren und zu überwachen. Die medizinische Forschung an EIT hat sich dabei hauptsächlich auf die Schätzung der räumlichen Belüftung konzentriert. Kommerziell erhältliche Systeme haben gezeigt, dass die EIT eine wertvolle Entscheidungshilfe während der mechanischen Beatmung darstellt. Allerdings ist die Abschätzung der pulmonalen Perfusion mit EIT noch nicht etabliert. Dies könnte das fehlende Glied sein, um die Analyse des pulmonalen Gasaustauschs am Krankenbett zu ermöglichen. Obwohl einige Publikationen die prinzipielle Machbarkeit der indikatorgestützten EIT zur Schätzung der räumlichen Verteilung des pulmonalen Blutflusses gezeigt haben, müssen diese Methoden optimiert und durch Vergleich mit dem Goldstandard des Lungenperfusions-Monitorings validiert werden. Darüber hinaus ist weitere Forschung notwendig, um zu verstehen welche physiologischen Informationen der EIT-Perfusionsschätzung zugrunde liegen. Mit der vorliegenden Arbeit soll die Frage beantwortet werden, ob bei der klinischen Anwendung von EIT neben der regionalen Belüftung auch räumliche Informationen des pulmonalen Blutflusses geschätzt werden können, um damit potenziell den pulmonalen Gasaustausch am Krankenbett beurteilen zu können. Die räumliche Verteilung der Perfusion wurde durch Bolusinjektion einer leitfähigen Kochsalzlösung als Indikator geschätzt, um die Verteilung des Indikators während seines Durchgangs durch das Gefäßsystem der Lunge zu verfolgen. Verschiedene dynamische EIT-Rekonstruktionsmethoden und Perfusionsparameter Schätzmethoden wurden entwickelt und verglichen, um den pulmonalen Blutfluss robust beurteilen zu können. Die geschätzten regionalen EIT-Perfusionsverteilungen wurden gegen Goldstandard Messverfahren der Lungenperfusion validiert. Eine erste Validierung wurde anhand von Daten einer tierexperimentellen Studie durchgeführt, bei der die Multidetektor-Computertomographie als vergleichende Lungenperfusionsmessung verwendet wurde. Darüber hinaus wurde im Rahmen dieser Arbeit eine umfassende präklinische Tierstudie durchgeführt, um die Lungenperfusion mit indikatorverstärkter EIT und Positronen-Emissions-Tomographie während mehrerer verschiedener experimenteller Zustände zu untersuchen. Neben einem gründlichen Methodenvergleich sollte die klinische Anwendbarkeit der indikatorgestützten EIT-Perfusionsmessung untersucht werden, indem wir vor allem die minimale Indikatorkonzentration analysierten, die eine robuste Perfusionsschätzung erlaubte und den geringsten Einfluss für den Patienten darstellt. Neben den experimentellen Validierungsstudien wurden zwei in-silico-Untersuchungen durchgeführt, um erstens die Sensitivität von EIT gegenüber des Durchgangs eines leitfähigen Indikators durch die Lunge vor stark heterogenem pulmonalen Hintergrund zu bewerten. Zweitens untersuchten wir die physiologischen Einflüsse, die zu den rekonstruierten EITPerfusionsbildern beitragen, um die Limitationen der Methode besser zu verstehen. Die Analysen zeigten, dass die Schätzung der Lungenperfusion auf der Basis der indikatorverstärkten EIT ein großes Potenzial für die Anwendung in der klinischen Praxis aufweist, da wir sie mit zwei Goldstandard-Perfusionsmesstechniken validieren konnten. Zudem konnten wertvolle Schlüsse über die physiologischen Einflüsse auf die geschätzten EIT Perfusionsverteilungen gezogen werden
    corecore