59 research outputs found

    Development of an Automated Sealing System for Polythene Bag

    Get PDF
    The blessings of technology have sky rocketed in recent era and everything that is witnessed in the surroundings are the contribution of technology. Therefore, being up to date with the technology is the demand of modern science. The more automated the processes are, the better up to date is the technology. This paper presents the design and construction of a low cost yet flexible and secure automation based polythene bag sealer. This paper will investigate automation function, sealing mechanism as well as integration of automated filler, robotic hand and conveyor over the system. The purpose of this system is to supply polythene bags through vacuum grippers and seal these bags automatically and hence it is called an automated sealer. The parts that have been used in this system are working according to plan and the strength of sealing has been determined by hanging dead weight with the polythene bag. If there is enough capital and investment made behind this whole process, then it will be possible to construct the desired machine and make it eligible to use in the industr

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Design and Development of a Soft Robotic Gripper for Fabric Material Handling

    Get PDF
    Fabric and textile materials are widely used in many industrial applications, especially in automotive, aviation and consumer goods. Currently, there is no semi-automatic or automatic solution for rapid, effective, and reconfigurable pick and place activities for limp, air permeable flexible components in industry. The production of these light-weight flexible textile or composite fiber products highly rely on manual operations, which lead to high production costs, workplace safety issues, and process bottlenecks. As a bio-inspired novel technology, soft robotic grippers provide new opportunities for the automation of fabric handling tasks. In this research, the characteristics of fabric pick and place tasks using the clamping grippers are quantitatively investigated. Experiments on a carbon fiber fabric are performed with a collaborative robot to explore the damage, slippage, draping, and wrinkling during basic pick and place operations. Based on the experimental results, multiple soft robotic gripper configurations are developed, including a compliant glove set that can improve the performance of traditional rigid grippers, an elastomer-based soft gripper, and a linkage-based underactuated gripper. The gripper designs are analyzed and refined based on finite element simulation. Prototypes of the grippers are fabricated using a rapid tooling solution for an overmolding strategy to verify their functionality. Through the research, it is proven feasible to reliably perform flexible fabric handling operations using soft grippers with appropriate toolpath planning. Finite element simulation and additive manufacturing have shown to be useful tools during the gripper design and development procedure, and the methodologies developed and applied in this work should be expanded for more flexible material handling challenges

    Gentle Robotic Handling Using Acceleration Compensation

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)
    corecore