279 research outputs found

    Modeling, simulation and control of a 4WD electric vehicle with in-wheel motors

    Get PDF
    A relatively new technology for the electric vehicles considers the use of brushless permanent magnet motors directly connected to the car wheels (in-wheel motors or hub motors). In order to evaluate the performance that can be obtained, a complete dynamic model of a four-wheel drive (4WD) electric vehicle equipped with four in-wheel motors is developed and a correspondent parametric simulator is implemented in Matlab/Simulink™. The simulator is also employed for designing, testing and comparing various control logics which reproduce the handling behavior of a real vehicle

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Control of an Independent 4WD electric vehicle by DYC method

    Get PDF
    Current advances in the application of control systems to vehicle dynamics has made it practicable to improve the vehicle’s longitudinal, lateral and vertical dynamics. Some of the examples of application of these systems to vehicle control are traction control (longitudinal dynamics) to prevent wheel slip, ESP (lateral dynamics) to prevent loss of stability, and active suspension (vertical dynamics) to increase ride comfort. In this paper, the vehicle lateral motion is controlled by direct yaw control (DYC) method. This uses the yaw moment produced by the longitudinal forces of the tyres, for stabilising the vehicle motion during critical cornering conditions. The system is been designed to give substantially enhanced active safety and dynamic handling control. The vehicle dynamics control algorithm is developed for a FOX vehicle by controlling couple traction/braking torque of the four in-wheel motors, from basic driving slogans. These are the steering angle, position of the accelerator pedal and brake by the position of the brake pedal, as shown in Figure 1

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    Electric Vehicle Efficient Power and Propulsion Systems

    Get PDF
    Vehicle electrification has been identified as one of the main technology trends in this second decade of the 21st century. Nearly 10% of global car sales in 2021 were electric, and this figure would be 50% by 2030 to reduce the oil import dependency and transport emissions in line with countries’ climate goals. This book addresses the efficient power and propulsion systems which cover essential topics for research and development on EVs, HEVs and fuel cell electric vehicles (FCEV), including: Energy storage systems (battery, fuel cell, supercapacitors, and their hybrid systems); Power electronics devices and converters; Electric machine drive control, optimization, and design; Energy system advanced management methods Primarily intended for professionals and advanced students who are working on EV/HEV/FCEV power and propulsion systems, this edited book surveys state of the art novel control/optimization techniques for different components, as well as for vehicle as a whole system. New readers may also find valuable information on the structure and methodologies in such an interdisciplinary field. Contributed by experienced authors from different research laboratory around the world, these 11 chapters provide balanced materials from theorical background to methodologies and practical implementation to deal with various issues of this challenging technology. This reprint encourages researchers working in this field to stay actualized on the latest developments on electric vehicle efficient power and propulsion systems, for road and rail, both manned and unmanned vehicles

    Vehicle Dynamic Control of 4 In-Wheel-Motor Drived Electric Vehicle

    Get PDF

    Research of North Pole amphibious vehicle's technologies and Powertrain simulation

    Get PDF
    The aim of this master’s thesis is to provide a useful framework for upcoming researches about amphibious vehicles designed for the North Pole. This thesis is a brief introduction to the North Pole Amphibious Vehicles, which consists in studying the main requirements of this kind of vehicle. Thus, the research about amphibious vehicle technologies is done on the state-of-art and different powertrain systems and configurations are studied. In this project, a 3D design of an amphibious vehicle and its flow simulation were created with Solidworks in order to calculate the longitudinal parameters of the vehicle. The powertrain system has been chosen following an analysis of conventional, electric and hybrid powertrains, so as to determine which system has a better performance at the North Pole. Different powertrain configurations have been modelled in Matlab Simulink following the mathematical equations that describe the components or using the Powertrain Blockset offered by Matlab. The software simulates the whole powertrain dynamics in conjunction. The results obtained by the simulation were used to compare the 4WD and 6WD powertrains in order to find out which are the most suitable.Outgoin

    Simulation of Electric Vehicles Combining Structural and Functional Approaches

    Get PDF
    In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.Fil: Silva, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Magallán, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de la Barrera, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de Angelo, Cristian Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Garcia, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentin

    SYSTEM MODELING AND POWER MANAGEMENT STRATEGY FOR A SERIES HYDRAULIC HYBRID VEHICLE

    Get PDF
    A hydraulic hybrid vehicle draws propulsion power from an internal combustion engine as its prime mover and a gas-charged hydro-pneumatic accumulator as its energy buffer. The accumulator serves the purposes of storing regenerated braking energy and supplementing engine power as determined by an on-board power management strategy. In the configuration known as a series hydraulic hybrid powertrain, the engine is mechanically decoupled from the vehicle\u27s wheels thereby offering excellent opportunities for maximizing energy efficiency and reducing pollutant emissions. This thesis dealt with the development of a causally interconnected, non-linear, dynamic model of a series hydraulic hybrid powertrain featuring independently controllable wheel-end drives. Using the model so developed, the work investigated the potentials of three proposed power management strategies on the fuel/energy use of a test vehicle. The strategies studied included: a real-time implementable rule-based strategy, an on-line solvable instantaneous consumption minimization strategy, and a non-causal trip/globally optimal power management strategy based on dynamic programming. The results indicated that, when properly designed, all three power management strategies can help realize the fuel economy benefits of the proposed hydraulic hybrid drive system. Over a standard city drive cycle, the rule-based power management strategy was shown to provide a fuel economy improvement of more than 30% with four-motor drive over the conventional drive system. The trip/globally optimal strategy obtained via dynamic programming gave an average of over 50% higher fuel economy improvement with four-motor drive. The instantaneous consumption minimization strategy, which is adopted to overcome the non-causality of dynamic programming and the lack of rigorous optimality of the rule-based strategy, gave fuel economy improvements that generally fell between the other two strategies. Results are also included from the analysis of the effects of accumulator size and two-motor vs. four motor drive options along with the choice of the power management strategy

    Electric Differential for an Electric Vehicle with Four Independent Driven Motors and Four Wheels Steering Ability Using Improved Fictitious Master Synchronization Strategy

    Get PDF
    Using an Electric Differential (ED) in electric vehicle has many advantages such as flexibility and direct torque control of the wheels during cornering and risky maneuvers. Despite its reported successes and advantages, the ED has several problems limits its applicability, for instance, an increment of control loops and an increase of computational effort. In this paper, an electric differential for an electric vehicle with four independent driven motors is proposed. The proposed ED is easy-to-implement and hasn’t the problems of previous EDs. This ED has been developed for four wheels steering vehicles. The synchronization action is achieved by using an improved fictitious master technique, and the Ackerman principle is used to compute an adaptive desired wheel speed. The proposed ED is simulated and the operation of the system is studied. The simulation results show that ED ensures both reliability and good path tracking
    • …
    corecore