34,520 research outputs found

    Optimization of the long-term planning of supply chains with decaying performance

    Get PDF
    This master's thesis addresses the optimization of supply and distribution chains considering the effect that equipment aging may cause over the performance of facilities involved in the process. The decaying performance of the facilities is modeled as an exponential equation and can be either physical or economic, thus giving rise to a novel mixed integer non-linear programming (MINLP) formulation. The optimization model has been developed based on a typical chemical supply chain. Thus, the best long-term investment plan has to be determined given production nodes, their production capacity and expected evolution; aggregated consumption nodes (urban or industrial districts) and their lumped demand (and expected evolution); actual and potential distribution nodes; distances between the nodes of the network; and a time horizon. The model includes the balances in each node, a general decaying performance function, and a cost function, as well as constraints to be satisfied. Hence, the investment plan (decision variables) consists not only on the start-up and shutdown of alternative distribution facilities, but also on the sizing of the lines satisfying the flows. The model has been implemented using GAMS optimization software. Results considering a variety of scenarios have been discussed. In addition, different approaches to the starting point for the model have been compared, showing the importance of initializing the optimization algorithm. The capabilities of the proposed approach have been tested through its application to two case studies: a natural gas network with physical decaying performance and an electricity distribution network with economic decaying performance. Each case study is solved with a different procedure to obtain results. Results demonstrate that overlooking the effect of equipment aging can lead to infeasible (for physical decaying performance) or unrealistic (for economic decaying performance) solutions in practice and show how the proposed model allows overcoming such limitations thus becoming a practical tool to support the decision-making process in the distribution secto

    A variational approach for continuous supply chain networks

    Get PDF
    We consider a continuous supply chain network consisting of buffering queues and processors first proposed by [D. Armbruster, P. Degond, and C. Ringhofer, SIAM J. Appl. Math., 66 (2006), pp. 896–920] and subsequently analyzed by [D. Armbruster, P. Degond, and C. Ringhofer, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), pp. 433–460] and [D. Armbruster, C. De Beer, M. Fre- itag, T. Jagalski, and C. Ringhofer, Phys. A, 363 (2006), pp. 104–114]. A model was proposed for such a network by [S. G ̈ottlich, M. Herty, and A. Klar, Commun. Math. Sci., 3 (2005), pp. 545–559] using a system of coupling ordinary differential equations and partial differential equations. In this article, we propose an alternative approach based on a variational method to formulate the network dynamics. We also derive, based on the variational method, a computational algorithm that guarantees numerical stability, allows for rigorous error estimates, and facilitates efficient computations. A class of network flow optimization problems are formulated as mixed integer programs (MIPs). The proposed numerical algorithm and the corresponding MIP are compared theoretically and numerically with existing ones [A. Fu ̈genschuh, S. Go ̈ttlich, M. Herty, A. Klar, and A. Martin, SIAM J. Sci. Comput., 30 (2008), pp. 1490–1507; S. Go ̈ttlich, M. Herty, and A. Klar, Commun. Math. Sci., 3 (2005), pp. 545–559], which demonstrates the modeling and computational advantages of the variational approach

    Numerical schemes for the optimal input flow of a supply-chain

    Full text link
    An innovative numerical technique is presented to adjust the inflow to a supply chain in order to achieve a desired outflow, reducing the costs of inventory, or the goods timing in warehouses. The supply chain is modelled by a conservation law for the density of processed parts coupled to an ODE for the queue buffer occupancy. The control problem is stated as the minimization of a cost functional J measuring the queue size and the quadratic difference between the outflow and the expected one. The main novelty is the extensive use of generalized tangent vectors to a piecewise constant control, which represent time shifts of discontinuity points. Such method allows convergence results and error estimates for an Upwind- Euler steepest descent algorithm, which is also tested by numerical simulations

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions
    • …
    corecore