3,967 research outputs found

    Automatic controls and regulators: A compilation

    Get PDF
    Devices, methods, and techniques for control and regulation of the mechanical/physical functions involved in implementing the space program are discussed. Section one deals with automatic controls considered to be, essentially, start-stop operations or those holding the activity in a desired constraint. Devices that may be used to regulate activities within desired ranges or subject them to predetermined changes are dealt with in section two

    Data-Driven Model-Free Sliding Mode and Fuzzy Control with Experimental Validation

    Get PDF
    The paper presents the combination of the model-free control technique with two popular nonlinear control techniques, sliding mode control and fuzzy control. Two data-driven model-free sliding mode control structures and one data-driven model-free fuzzy control structure are given. The data-driven model-free sliding mode control structures are built upon a model-free intelligent Proportional-Integral (iPI) control system structure, where an augmented control signal is inserted in the iPI control law to deal with the error dynamics in terms of sliding mode control. The data-driven model-free fuzzy control structure is developed by fuzzifying the PI component of the continuous-time iPI control law. The design approaches of the data-driven model-free control algorithms are offered. The data-driven model-free control algorithms are validated as controllers by real-time experiments conducted on 3D crane system laboratory equipment

    Missile Attitude Control via a Hybrid LQG-LTR-LQI Control Scheme with Optimum Weight Selection

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.This paper proposes a new strategy for missile attitude control using a hybridization of Linear Quadratic Gaussian (LQG), Loop Transfer Recovery (LTR), and Linear Quadratic Integral (LQI) control techniques. The LQG control design is carried out in two steps i.e. firstly applying Kalman filter for state estimation in noisy environment and then using the estimated states for an optimal state feedback control via Linear Quadratic Regulator (LQR). As further steps of performance improvement of the missile attitude control system, the LTR and LQI schemes are applied to increase the stability margins and guarantee set-point tracking performance respectively, while also preserving the optimality of the LQG. The weighting matrix (Q) and weighting factor (R) of LQG and the LTR fictitious noise coefficient (q) are tuned using Nelder-Mead Simplex optimization technique to make the closed-loop system act faster. Simulations are given to illustrate the validity of the proposed technique

    An Active Disturbance Rejection Control Solution for Electro-Hydraulic Servo Systems

    Get PDF
    The intriguing history of disturbance cancellation control is reviewed in this thesis first, which demonstrates that this unique control concept is both reasonable and practical. One novel form of disturbance cancellation, ADRC (Active Disturbance Rejection Control), attracts much attention because of its good disturbance rejection ability and simplicity in implementation. Hydraulic systems tend to have many disturbances and model uncertainties, giving us a great motivation to find out a good control method. In this thesis, electro-hydraulic servo control problem is reformulated to focus on the core problem of disturbance rejection. An ADRC solution is developed and evaluated against the industry standard solution, with promising result

    Active control for non-autonomous diaphragm-type pneumatic isolation system by using an augmented adaptive sliding-mode controller

    Get PDF
    An augmented adaptive sliding-mode controller is proposed in this paper for a diaphragm-type pneumatic vibration isolation (PVI) system containing nonlinear characteristics and time-varying uncertainties with unknown bounds. To capture and deal with the time-varying uncertainties, a controller design based primarily on the functional approximation (FA) technique complemented with an adaptive fuzzy sliding-mode control (AFSMC) is adopted. The resultant hybrid design is denoted as FA+AFSMC to differentiate itself from other attempting solutions. Lyapunov stability theory is utilized not only to stabilize the closed-loop system but also to formulate updating laws for weighting coefficients of the FA and tuning parameters of the AFSMC. This developed scheme has online learning ability when it faces the system’s nonlinear and time-varying behaviors. Experimental explorations which incorporates both pressure and velocity measurements as feedback signals reveals that the proposed FA+AFSMC scheme outperforms other attempting solutions, such as passive isolation and pure AFSMC scheme, by a significant margin
    • …
    corecore