15,729 research outputs found

    Comparative assessment of control strategies for the biradial turbine in the Mutriku OWC plant

    Get PDF
    To be competitive against other renewable energy sources, energy converted from the ocean waves needs to reduce its associated levelised cost of energy. It has been proven that advanced control algorithms can increase power production and device reliability. They act throughout the power conversion chain, from the hydrodynamics of wave absorption to the power take-off to improve the energy yield. The present work highlights the development and test of several algorithms to control the biradial turbine which is to be installed in the Mutriku oscillating water column plant. A collection of adaptive and predictive controllers is explored and both turbine speed controllers and latching strategies are examined. A Wave-to-Wire model of one chamber of the plant is detailed and simulation results of six control laws are obtained. The controllers are then validated using an electrical test infrastructure to prepare the future deployment in the plant. Finally, the control strategies are assessed against criteria like energy production, power quality or reliability.This work has received funding from the European Union'sHorizon 2020 research and innovation programme under grantagreement No 654444 (OPERA Project). This work was financed by GV/EJ (Basque Country Government) under grants IT1324-19. The second author was partially funded by the Portuguese Foundationfor Science and Technology (FCT) through IDMEC, under LAETAPEst-OE/EME/LA0022 by FCT researcher grant No. IF/01457/2014.The authors acknowledge AZTI Tecnalia for wave resource data measured at the plant

    Англійська мова для студентів електромеханічних спеціальностей

    Get PDF
    Навчальний посібник розрахований на студентів напряму підготовки 6.050702 Електромеханіка. Містить уроки, що структуровані за тематичними розділами, граматичний коментар, короткі англо-український і українсько- англійський словники та додатки, які спрямовані на закріплення загальних навичок володіння англійською мовою. Акцентований на ɨсобливості термінології, що застосовується у науково-технічній галузі, зокрема, в електромеханіці та виконання запропонованих завдань, що буде сприяти формуванню навичок перекладу з англійської та української мов, сприйняттю письмової та усної англійської мови, вмінню письмового викладення англійською мовою науково-технічних та інших текстів під час професійної діяльності, спілкуванню з професійних та загальних питань тощо

    Data-driven discovery of the heat equation in an induction machine via sparse regression

    Get PDF
    Discovery of natural laws through input-output data analysis has been of considerable interest during the past decade. Various approach among which the increasingly growing body of sparsity-based algorithms have been recently proposed for the purpose of free-form system identification. There has however been limited discussion on the performance of these approaches when applied on experimental datasets. The aim of this paper is to study the capability of this technique for identifying the heat equation as the natural law of heat distribution from experimental data, obtained using a Totally-Enclosed-Fan-Cooled (TEFC) induction machine, with and without active cooling. The results confirm the usefulness of the algorithm as a method to identify the underlying natural law in a physical system in the form of a Partial Differential Equation (PDE)

    Automated and Flexible Coil Winding Robotic Framework

    Get PDF
    European electrical machines manufacturers need to increase the flexibility of production process, due to the high cost of equipment setup at the beginning of each new production batch. Overall, most of these European manufacturers are striving to reduce costs while preserving the quality of products, in order to face the competition by Far East companies. There is a strong need for increasing productivity, flexibility and quality. In particular, in wound coils manufacturing process, current technologies allow only to big international manufacturer to automate their production lines, due to high machinery cost and set-up time, while small and medium manufacturers are forced to direct themselves towards manual production. This work aims to reduce costs and increase flexibility with the following contributions: (1) important reduction of setup time and costs of the winding machine, thanks to the simplicity and flexibility of the proposed approach; (2) increase in the quality of the final motors, thanks to the increased amount of copper that the robot will be able to insert in each coil with respect to manual winding; (3) possibility to parallelize the winding operations, dramatically increasing production rate; (4) decreased number of defected cores, thanks to an advanced quality inspection system; (5) reduction of environmental impact of the production process, thanks to a reduction of wasted copper wire

    Wind turbine generator rotor blade concepts with low cost potential

    Get PDF
    Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades

    Baseline Data from Servo Motors in a Robotic Arm for Autonomous Machine Fault Diagnosis

    Get PDF
    Fault diagnosis can prolong the life of machines if potential sources of failure are discovered and corrected before they occur. Supervised machine learning, or the use of training data to enable machines to discover these faults on their own, makes failure prevention much easier. The focus of this thesis is to investigate the feasibility of creating datasets of various faults at both the component and system level for a servomotor and a compatible robotic arm, such that this data can be used in machine learning algorithms for fault diagnosis. The faults induced at the component level in different servomotors include: low lubrication, no lubrication, two gears chipped, and four gears chipped. Each fault was also examined at 180, 135, 90, and 45-degree swings of the servo arm. Component level data was obtained using an Arduino microcontroller and a feedback wire in each servomotor to obtain the actual position of the servo arm, which allowed for the calculation of the difference in actual and theoretical position and the speed of the servo arm at the various faults. System level data was obtained using OptiTrack’s motion tracking software, Motive, to track the position of two reflective markers on the hand of the robotic arm. At the component level, the low lubrication and no lubrication faults did not exhibit a large difference from the normal servomotor, whereas the servomotors with the gears chipped exhibited significant differences when compared to the normal servomotor. When evaluating the difference in position and speed of the servo arm at larger degree sweeps it was more evident that failure occurred, as opposed to the data at smaller degree sweeps. At the system level, the error was not as visible in the data as there wasn’t much distinction between the speeds of the robotic arm’s hand when the servomotors with faults were placed in it. The results of this work indicate that servomotors can be used to create fault behavior datasets at the component and system level that are usable for machine learning

    Design of a miniature permanent-magnet generator and energy storage system

    Get PDF
    The paper describes a methodology for optimizing the design and performance of a miniature permanent-magnet generator and its associated energy storage system. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. Its utility is demonstrated by means of a case study on a 15-mW, 6000-r/min generator, and the analysis techniques are validated by measurements on a prototype system

    Accurate Estimation of Core Losses for PFC Inductors

    Get PDF
    abstract: As the world becomes more electronic, power electronics designers have continuously designed more efficient converters. However, with the rising number of nonlinear loads (i.e. electronics) attached to the grid, power quality concerns, and emerging legislation, converters that intake alternating current (AC) and output direct current (DC) known as rectifiers are increasingly implementing power factor correction (PFC) by controlling the input current. For a properly designed PFC-stage inductor, the major design goals include exceeding minimum inductance, remaining below the saturation flux density, high power density, and high efficiency. In meeting these goals, loss calculation is critical in evaluating designs. This input current from PFC circuitry leads to a DC bias through the filter inductor that makes accurate core loss estimation exceedingly difficult as most modern loss estimation techniques neglect the effects of a DC bias. This thesis explores prior loss estimation and design methods, investigates finite element analysis (FEA) design tools, and builds a magnetics test bed setup to empirically determine a magnetic core’s loss under any electrical excitation. In the end, the magnetics test bed hardware results are compared and future work needed to improve the test bed is outlined.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Fundamentals of Machine Design and Manufacturing: Design of a Compliant Winding Machine

    Get PDF
    A Sparton Electronics Compliant Winding Machine has been redesigned for improved performance. Thorough study of the existing machine identified issues such as the inconsistent diameter and pitch of the compliant wind, outdated equipment, as well as safety and ergonomic issues. A comprehensive methodology for the design of the new machine is presented through using CAD systems and advanced analysis tools, such as Finite Element Analysis, and HEEDS. Resulting, the machine is successfully re-designed to fully control the diameter and the pitch of the product via servo motors and a control panel. The safety and ergonomic issues are effectively resolved by relocating the linear system, spool and spool housings to the bottom of the machine. The height of the machine is also adjusted following OSHA regulations. In conclusion, CWM is successfully designed and manufactured to meet the requirements and specifications of Sparton Electronics
    corecore