850,735 research outputs found

    Streaming, Distributed Variational Inference for Bayesian Nonparametrics

    Full text link
    This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.Comment: This paper was presented at NIPS 2015. Please use the following BibTeX citation: @inproceedings{Campbell15_NIPS, Author = {Trevor Campbell and Julian Straub and John W. {Fisher III} and Jonathan P. How}, Title = {Streaming, Distributed Variational Inference for Bayesian Nonparametrics}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2015}

    Client Selection for Federated Bayesian Learning

    Full text link
    Distributed Stein Variational Gradient Descent (DSVGD) is a non-parametric distributed learning framework for federated Bayesian learning, where multiple clients jointly train a machine learning model by communicating a number of non-random and interacting particles with the server. Since communication resources are limited, selecting the clients with most informative local learning updates can improve the model convergence and communication efficiency. In this paper, we propose two selection schemes for DSVGD based on Kernelized Stein Discrepancy (KSD) and Hilbert Inner Product (HIP). We derive the upper bound on the decrease of the global free energy per iteration for both schemes, which is then minimized to speed up the model convergence. We evaluate and compare our schemes with conventional schemes in terms of model accuracy, convergence speed, and stability using various learning tasks and datasets

    Byzantine-Resilient Learning Beyond Gradients: Distributing Evolutionary Search

    Full text link
    Modern machine learning (ML) models are capable of impressive performances. However, their prowess is not due only to the improvements in their architecture and training algorithms but also to a drastic increase in computational power used to train them. Such a drastic increase led to a growing interest in distributed ML, which in turn made worker failures and adversarial attacks an increasingly pressing concern. While distributed byzantine resilient algorithms have been proposed in a differentiable setting, none exist in a gradient-free setting. The goal of this work is to address this shortcoming. For that, we introduce a more general definition of byzantine-resilience in ML - the \textit{model-consensus}, that extends the definition of the classical distributed consensus. We then leverage this definition to show that a general class of gradient-free ML algorithms - (1,λ1,\lambda)-Evolutionary Search - can be combined with classical distributed consensus algorithms to generate gradient-free byzantine-resilient distributed learning algorithms. We provide proofs and pseudo-code for two specific cases - the Total Order Broadcast and proof-of-work leader election.Comment: 10 pages, 4 listings, 2 theorem

    RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets

    Full text link
    In this paper, we propose a class of robust stochastic subgradient methods for distributed learning from heterogeneous datasets at presence of an unknown number of Byzantine workers. The Byzantine workers, during the learning process, may send arbitrary incorrect messages to the master due to data corruptions, communication failures or malicious attacks, and consequently bias the learned model. The key to the proposed methods is a regularization term incorporated with the objective function so as to robustify the learning task and mitigate the negative effects of Byzantine attacks. The resultant subgradient-based algorithms are termed Byzantine-Robust Stochastic Aggregation methods, justifying our acronym RSA used henceforth. In contrast to most of the existing algorithms, RSA does not rely on the assumption that the data are independent and identically distributed (i.i.d.) on the workers, and hence fits for a wider class of applications. Theoretically, we show that: i) RSA converges to a near-optimal solution with the learning error dependent on the number of Byzantine workers; ii) the convergence rate of RSA under Byzantine attacks is the same as that of the stochastic gradient descent method, which is free of Byzantine attacks. Numerically, experiments on real dataset corroborate the competitive performance of RSA and a complexity reduction compared to the state-of-the-art alternatives.Comment: To appear in AAAI 201
    • …
    corecore