3,530 research outputs found

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    The MaggLite Post-WIMP Toolkit: Draw It, Connect It and Run It

    Get PDF
    International audienceThis article presents MaggLite, a toolkit and sketch-based interface builder allowing fast and interactive design of post-WIMP user interfaces. MaggLite improves design of advanced UIs thanks to its novel mixed-graph architecture that dynamically combines scene-graphs with interaction- graphs. Scene-graphs provide mechanisms to describe and produce rich graphical effects, whereas interaction-graphs allow expressive and fine-grained description of advanced interaction techniques and behaviors such as multiple pointers management, toolglasses, bimanual interaction, gesture, and speech recognition. Both graphs can be built interactively by sketching the UI and specifying the interaction using a dataflow visual language. Communication between the two graphs is managed at runtime by components we call Interaction Access Points. While developers can extend the toolkit by refining built-in generic mechanisms, UI designers can quickly and interactively design, prototype and test advanced user interfaces by applying the MaggLite principle: "draw it, connect it and run it"

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies

    Get PDF
    The revolution of additive manufacturing (AM) has led to many opportunities in fabricating complex and novel products. The increase of printable materials and the emergence of novel fabrication processes continuously expand the possibility of engineering systems in which product components are no longer limited to be single material, single scale, or single function. In fact, a paradigm shift is taking place in industry from geometry-centered usage to supporting functional demands. Consequently, engineers are expected to resolve a wide range of complex and difficult problems related to functional design. Although a higher degree of design freedom beyond geometry has been enabled by AM, there are only very few computational design approaches in this new AM-enabled domain to design objects with tailored properties and functions. The objectives of this review paper are to provide an overview of recent additive manufacturing developments and current computer-aided design methodologies that can be applied to multimaterial, multiscale, multiform, and multifunctional AM technologies. The difficulties encountered in the computational design approaches are summarized and the future development needs are emphasized. In the paper, some present applications and future trends related to additive manufacturing technologies are also discussed

    Model-based tool support for Tactical Data Links: an experience report from the defence domain

    Get PDF
    The Tactical Data Link (TDL) allows the exchange of information between cooperating platforms as part of an integrated command and control (C2) system. Information exchange is facilitated by adherence to a complex, message-based protocol defined by document-centric standards. In this paper, we report on a recent body of work investigating migration from a document-centric to a model-centric approach within the context of the TDL domain, motivated by a desire to achieve a positive return on investment. The model-centric approach makes use of the Epsilon technology stack and provides a significant improvement to both the level of abstraction and rigour of the network design. It is checkable by a machine and, by virtue of an MDA-like approach to the separation of domains and model transformation between domains, is open to integration with other models to support more complex workflows, such as by providing the results of interoperability analyses in human-readable domain-specific reports conforming to an accepted standard

    A dataflow platform for applications based on Linked Data

    Get PDF
    Modern software applications increasingly benefit from accessing the multifarious and heterogeneous Web of Data, thanks to the use of web APIs and Linked Data principles. In previous work, the authors proposed a platform to develop applications consuming Linked Data in a declarative and modular way. This paper describes in detail the functional language the platform gives access to, which is based on SPARQL (the standard query language for Linked Data) and on the dataflow paradigm. The language features interactive and meta-programming capabilities so that complex modules/applications can be developed. By adopting a declarative style, it favours the development of modules that can be reused in various specific execution context

    FV-RAD : a practical framework for rapid application development

    Get PDF
    Estágio realizado na OPT-Optimização e Planeamento de Transportes, S.ATese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    IST Austria Thesis

    Get PDF
    Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop
    • …
    corecore