10,811 research outputs found

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Model checking for imprecise Markov chains.

    Get PDF
    We extend probabilistic computational tree logic for expressing properties of Markov chains to imprecise Markov chains, and provide an efficient algorithm for model checking of imprecise Markov chains. Thereby, we provide a formal framework to answer a very wide range of questions about imprecise Markov chains, in a systematic and computationally efficient way

    Model-checking branching-time properties of probabilistic automata and probabilistic one-counter automata

    Full text link
    This paper studies the problem of model-checking of probabilistic automaton and probabilistic one-counter automata against probabilistic branching-time temporal logics (PCTL and PCTLāˆ—^*). We show that it is undecidable for these problems. We first show, by reducing to emptiness problem of probabilistic automata, that the model-checking of probabilistic finite automata against branching-time temporal logics are undecidable. And then, for each probabilistic automata, by constructing a probabilistic one-counter automaton with the same behavior as questioned probabilistic automata the undecidability of model-checking problems against branching-time temporal logics are derived, herein.Comment: Comments are welcom

    Qualitative Reachability for Open Interval Markov Chains

    Get PDF
    Interval Markov chains extend classical Markov chains with the possibility to describe transition probabilities using intervals, rather than exact values. While the standard formulation of interval Markov chains features closed intervals, previous work has considered also open interval Markov chains, in which the intervals can also be open or half-open. In this paper we focus on qualitative reachability problems for open interval Markov chains, which consider whether the optimal (maximum or minimum) probability with which a certain set of states can be reached is equal to 0 or 1. We present polynomial-time algorithms for these problems for both of the standard semantics of interval Markov chains. Our methods do not rely on the closure of open intervals, in contrast to previous approaches for open interval Markov chains, and can characterise situations in which probability 0 or 1 can be attained not exactly but arbitrarily closely.Comment: Full version of a paper published at RP 201

    Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage

    Full text link
    The applicability of model checking is hindered by the state space explosion problem in combination with limited amounts of main memory. To extend its reach, the large available capacities of secondary storage such as hard disks can be exploited. Due to the specific performance characteristics of secondary storage technologies, specialised algorithms are required. In this paper, we present a technique to use secondary storage for probabilistic model checking of Markov decision processes. It combines state space exploration based on partitioning with a block-iterative variant of value iteration over the same partitions for the analysis of probabilistic reachability and expected-reward properties. A sparse matrix-like representation is used to store partitions on secondary storage in a compact format. All file accesses are sequential, and compression can be used without affecting runtime. The technique has been implemented within the Modest Toolset. We evaluate its performance on several benchmark models of up to 3.5 billion states. In the analysis of time-bounded properties on real-time models, our method neutralises the state space explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24953-7_1
    • ā€¦
    corecore