1,932 research outputs found

    Model-checking branching-time properties of probabilistic automata and probabilistic one-counter automata

    Full text link
    This paper studies the problem of model-checking of probabilistic automaton and probabilistic one-counter automata against probabilistic branching-time temporal logics (PCTL and PCTL^*). We show that it is undecidable for these problems. We first show, by reducing to emptiness problem of probabilistic automata, that the model-checking of probabilistic finite automata against branching-time temporal logics are undecidable. And then, for each probabilistic automata, by constructing a probabilistic one-counter automaton with the same behavior as questioned probabilistic automata the undecidability of model-checking problems against branching-time temporal logics are derived, herein.Comment: Comments are welcom

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Finite-State Abstractions for Probabilistic Computation Tree Logic

    No full text
    Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for probabilistic verification of discrete-time Markov chains. Probabilistic model checking is a technique that verifies or refutes whether a property specified in this logic holds in a Markov chain. But Markov chains are often infinite or too large for this technique to apply. A standard solution to this problem is to convert the Markov chain to an abstract model and to model check that abstract model. The problem this thesis therefore studies is whether or when such finite abstractions of Markov chains for model checking PCTL exist. This thesis makes the following contributions. We identify a sizeable fragment of PCTL for which 3-valued Markov chains can serve as finite abstractions; this fragment is maximal for those abstractions and subsumes many practically relevant specifications including, e.g., reachability. We also develop game-theoretic foundations for the semantics of PCTL over Markov chains by capturing the standard PCTL semantics via a two-player games. These games, finally, inspire a notion of p-automata, which accept entire Markov chains. We show that p-automata subsume PCTL and Markov chains; that their languages of Markov chains have pleasant closure properties; and that the complexity of deciding acceptance matches that of probabilistic model checking for p-automata representing PCTL formulae. In addition, we offer a simulation between p-automata that under-approximates language containment. These results then allow us to show that p-automata comprise a solution to the problem studied in this thesis

    Confluence versus Ample Sets in Probabilistic Branching Time

    Get PDF
    To improve the efficiency of model checking in general, and probabilistic model checking in particular, several reduction techniques have been introduced. Two of these, confluence reduction and partial-order reduction by means of ample sets, are based on similar principles, and both preserve branching-time properties for probabilistic models. Confluence reduction has been introduced for probabilistic automata, whereas ample set reduction has been introduced for Markov decision processes. In this presentation we will explore the relationship between confluence and ample sets. To this end, we redefine confluence reduction to handle MDPs. We show that all non-trivial ample sets consist of confluent transitions, but that the converse is not true. We also show that the two notions coincide if the definition of confluence is restricted, and point out the relevant parts where the two theories differ. The results we present also hold for non-probabilistic models, as our theorems can just as well be applied in a context where all transitions are non-probabilistic. To show a practical application of our results, we adapt a state space generation technique based on representative states, already known in combination with confluence reduction, so that it can also be applied with partial-order reduction

    Analyzing probabilistic pushdown automata

    Get PDF
    The paper gives a summary of the existing results about algorithmic analysis of probabilistic pushdown automata and their subclasses.V článku je podán přehled známých výsledků o pravděpodobnostních zásobníkových automatech a některých jejich podtřídách

    Solving Stochastic B\"uchi Games on Infinite Arenas with a Finite Attractor

    Full text link
    We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized B\"uchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    Decisive Markov Chains

    Get PDF
    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In particular, this holds for probabilistic lossy channel systems (PLCS). Furthermore, all globally coarse Markov chains are decisive. This class includes probabilistic vector addition systems (PVASS) and probabilistic noisy Turing machines (PNTM). We consider both safety and liveness problems for decisive Markov chains, i.e., the probabilities that a given set of states F is eventually reached or reached infinitely often, respectively. 1. We express the qualitative problems in abstract terms for decisive Markov chains, and show an almost complete picture of its decidability for PLCS, PVASS and PNTM. 2. We also show that the path enumeration algorithm of Iyer and Narasimha terminates for decisive Markov chains and can thus be used to solve the approximate quantitative safety problem. A modified variant of this algorithm solves the approximate quantitative liveness problem. 3. Finally, we show that the exact probability of (repeatedly) reaching F cannot be effectively expressed (in a uniform way) in Tarski-algebra for either PLCS, PVASS or (P)NTM.Comment: 32 pages, 0 figure
    corecore