90 research outputs found

    Model Checking an Epistemic mu-calculus with Synchronous and Perfect Recall Semantics

    Full text link
    We identify a subproblem of the model-checking problem for the epistemic \mu-calculus which is decidable. Formulas in the instances of this subproblem allow free variables within the scope of epistemic modalities in a restricted form that avoids embodying any form of common knowledge. Our subproblem subsumes known decidable fragments of epistemic CTL/LTL, may express winning strategies in two-player games with one player having imperfect information and non-observable objectives, and, with a suitable encoding, decidable instances of the model-checking problem for ATLiR.Comment: 10 pages, Poster presentation at TARK 2013 (arXiv:1310.6382) http://www.tark.or

    Probabilistic and Epistemic Model Checking for Multi-Agent Systems

    Get PDF
    Model checking is a formal technique widely used to verify security and communication protocols in epistemic multi-agent systems against given properties. Qualitative properties such as safety and liveliness have been widely analysed in the literature. However, systems also have quantitative and uncertain (i.e., probabilistic) properties such as degree of reliability and reachability, which still need further attention from the model checking perspective. In this dissertation, we analyse such properties and present a new method for probabilistic model checking of epistemic multi-agent systems specified by a new probabilistic-epistemic logic PCTLK. We model multiagent systems distributed knowledge bases using probabilistic interpreted systems. We also define transformations from those interpreted systems into discrete-time Markov chains and from PCTLK formulae to PCTL formulae, an existing extension of CTL with probabilities. By so doing, we are able to convert the PCTLK model checking problem into the PCTL one. We address the problem of verifying probabilistic properties and epistemic properties in concurrent probabilistic systems as well. We then prove that model checking a formula of PCTLK in concurrent probabilistic systems is PSPACE-complete. Furthermore, we represent models associated with PCTLK logic symbolically with Multi-Terminal Binary Decision Diagrams (MTBDDs). Finally, we make use of PRISM, the model checker of PCTL without adding new computation cost. Dining cryptographers protocol is implemented to show the applicability of the proposed technique along with performance analysis and comparison in terms of execution time and state space scalability with MCK, an existing epistemic-probabilistic model checker, and MCMAS, a model checker for multi-agent systems. Another example, NetBill protocol, is also implemented with PRISM to verify probabilistic epistemic properties and to evaluate the complexity of this verification

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Modeling and Verifying Probabilistic Social Commitments in Multi-Agent Systems

    Get PDF
    Interaction among autonomous agents in Multi-Agent Systems (MASs) is the key aspect for solving complex problems that an individual agent cannot handle alone. In this context, social approaches, as opposed to the mental approaches, have recently received a considerable attention in the area of agent communication. They exploit observable social commitments to develop a verifiable formal semantics by which communication protocols can be specified. However, existing approaches for defining social commitments tend to assume an absolute guarantee of correctness so that systems run in a certain manner. That is, social commitments have always been modeled with the assumption of certainty. Moreover, the widespread use of MASs increases the interest to explore the interactions between different aspects of the participating agents such as the interaction between agents’ knowledge and social commitments in the presence of uncertainty. This results in having a gap, in the literature of agent communication, on modeling and verifying social commitments in probabilistic settings. In this thesis, we aim to address the above-mentioned problems by presenting a practical formal framework that is capable of handling the problem of uncertainty in social commitments. First, we develop an approach for representing, reasoning about, and verifying probabilistic social commitments in MASs. This includes defining a new logic called the probabilistic logic of commitments (PCTLC), and a reduction-based model checking procedure for verifying the proposed logic. In the reduction technique, the problem of model checking PCTLC is transformed into the problem of model checking PCTL so that the use of the PRISM (Probabilistic Symbolic Model Checker) is made possible. Formulae of PCTLC are interpreted over an extended version of the probabilistic interpreted systems formalism. Second, we extend the work we proposed for probabilistic social commitments to be able to capture and verify the interactions between knowledge and commitments. Properties representing the interactions between the two aspects are expressed in a new developed logic called the probabilistic logic of knowledge and commitment (PCTLkc). Third, we develop an adequate semantics for the group social commitments, for the first time in the literature, and integrate it into the framework. We then introduce an improved version of PCTLkc and extend it with operators for the group knowledge and group social commitments. The new refined logic is called PCTLkc+. In each of the latter stages, we respectively develop a new version of the probabilistic interpreted systems over which the presented logic is interpreted, and introduce a new reduction-based verification technique to verify the proposed logic. To evaluate our proposed work, we implement the proposed verification techniques on top of the PRISM model checker and apply them on several case studies. The results demonstrate the usefulness and effectiveness of our proposed work

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Getting the point : obtaining and understanding fixpoints in model checking

    Get PDF

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we
    • …
    corecore