321 research outputs found

    PHM of Proton-Exchange Membrane Fuel Cells - A review.

    No full text
    International audienceFuel Cell (FC) systems are promising power-generation sources that are more and more presented as a good alternative to current energy converters such as internal combustion engines. They suffer however from insufficient durability for stationary and transport applications, and lifetime may be improved. A greater understanding of underlying wearing processes is needed in order to improve this technology. However, FCs are in essence multi-physics and multi-scales systems (from the cells to the whole power system), which makes a modeling step of behaviors and degradation very difficult, even impossible. Thereby, data-driven Prognostic and Health Management (PHM) principles (as defined in condition-basedmaintenance scheme CBM) appear to be of great interest to face with the problems of health assessment and life prediction of FCs. According to all this, the aim of this paper is to present the current state of the art on PHM for FCs. Developments emphasize on PHM of the Proton-Exchange Membrane Fuel Cells (PEMFC) stack. The paper is organized so that important aspects like "behavior and losses FCs", "observation techniques", and "advanced PHM techniques" are addressed. Also, a taxonomy of existing works on PHM of PEMFC is given accordingly to the processing layers of CBM. The whole enables PHM practitioners as well as FCs experts to get a better understanding of remaining challenging issues

    Optimal cost minimization strategy for fuel cell hybrid electric vehicles based on decision making framework

    Get PDF
    The low economy of fuel cell hybrid electric vehicles is a big challenge to their wide usage. A road, health, and price-conscious optimal cost minimization strategy based on decision making framework was developed to decrease their overall cost. First, an online applicable cost minimization strategy was developed to minimize the overall operating costs of vehicles including the hydrogen cost and degradation costs of fuel cell and battery. Second, a decision making framework composed of the driving pattern recognition-enabled, prognostics-enabled, and price prediction-enabled decision makings, for the first time, was built to recognize the driving pattern, estimate health states of power sources and project future prices of hydrogen and power sources. Based on these estimations, optimal equivalent cost factors were updated to reach optimal results on the overall cost and charge sustaining of battery. The effects of driving cycles, degradation states, and pricing scenarios were analyzed

    A review on artificial intelligence in high-speed rail

    No full text
    High-speed rail (HSR) has brought a number of social and economic benefits, such as shorter trip times for journeys of between one and five hours; safety, security, comfort and on-time commuting for passengers; energy saving and environmental protection; job creation; and encouraging sustainable use of renewable energy and land. The recent development in HSR has seen the pervasive applications of artificial intelligence (AI). This paper first briefly reviews the related disciplines in HSR where AI may play an important role, such as civil engineering, mechanical engineering, electrical engineering and signalling and control. Then, an overview of current AI techniques is presented in the context of smart planning, intelligent control and intelligent maintenance of HSR systems. Finally, a framework of future HSR systems where AI is expected to play a key role is provided

    A Platform for Real-Time Space Health Analytics as a Service Utilizing Space Data Relays

    Full text link

    Trust-Based Cloud Machine Learning Model Selection For Industrial IoT and Smart City Services

    Get PDF
    With Machine Learning (ML) services now used in a number of mission-critical human-facing domains, ensuring the integrity and trustworthiness of ML models becomes all-important. In this work, we consider the paradigm where cloud service providers collect big data from resource-constrained devices for building ML-based prediction models that are then sent back to be run locally on the intermittently-connected resource-constrained devices. Our proposed solution comprises an intelligent polynomial-time heuristic that maximizes the level of trust of ML models by selecting and switching between a subset of the ML models from a superset of models in order to maximize the trustworthiness while respecting the given reconfiguration budget/rate and reducing the cloud communication overhead. We evaluate the performance of our proposed heuristic using two case studies. First, we consider Industrial IoT (IIoT) services, and as a proxy for this setting, we use the turbofan engine degradation simulation dataset to predict the remaining useful life of an engine. Our results in this setting show that the trust level of the selected models is 0.49% to 3.17% less compared to the results obtained using Integer Linear Programming (ILP). Second, we consider Smart Cities services, and as a proxy of this setting, we use an experimental transportation dataset to predict the number of cars. Our results show that the selected model's trust level is 0.7% to 2.53% less compared to the results obtained using ILP. We also show that our proposed heuristic achieves an optimal competitive ratio in a polynomial-time approximation scheme for the problem

    Multi-Level Data-Driven Battery Management: From Internal Sensing to Big Data Utilization

    Get PDF
    Battery management system (BMS) is essential for the safety and longevity of lithium-ion battery (LIB) utilization. With the rapid development of new sensing techniques, artificial intelligence and the availability of huge amounts of battery operational data, data-driven battery management has attracted ever-widening attention as a promising solution. This review article overviews the recent progress and future trend of data-driven battery management from a multi-level perspective. The widely-explored data-driven methods relying on routine measurements of current, voltage, and surface temperature are reviewed first. Within a deeper understanding and at the microscopic level, emerging management strategies with multi-dimensional battery data assisted by new sensing techniques have been reviewed. Enabled by the fast growth of big data technologies and platforms, the efficient use of battery big data for enhanced battery management is further overviewed. This belongs to the upper and the macroscopic level of the data-driven BMS framework. With this endeavor, we aim to motivate new insights into the future development of next-generation data-driven battery management
    • …
    corecore