96,159 research outputs found

    Model-based systems engineering for life-sciences instrumentation development

    Get PDF
    Next‐generation genome sequencing machines and Point‐of‐Care (PoC) in vitro diagnostics devices are precursors of an emerging class of Cyber‐Physical Systems (CPS), one that harnesses biomolecular‐scale mechanisms to enable novel "wet‐technology" applications in medicine, biotechnology, and environmental science. Although many such applications exist, testifying the importance of innovative life‐sciences instrumentation, recent events have highlighted the difficulties that designing organizations face in their attempt to guarantee safety, reliability, and performance of this special class of CPS. New regulations and increasing competition pressure innovators to rethink their design and engineering practices, and to better address the above challenges. The pace of innovation will be determined by how organizations manage to ensure the satisfaction of aforementioned constraints while also streamlining product development, maintaining high cost‐efficiency and shortening time‐to‐market. Model‐Based Systems Engineering provides a valuable framework for addressing these challenges. In this paper, we demonstrate that existing and readily available model‐based development frameworks can be adopted early in the life‐sciences instrumentation design process. Such frameworks are specifically helpful in describing and characterizing CPS including elements of a biological nature both at the architectural and performance level. We present the SysML model of a smartphone‐based PoC diagnostics system designed for detecting a particular molecular marker. By modeling components and behaviors spanning across the biological, physical‐nonbiological, and computational domains, we were able to characterize the important systemic relations involved in the specification of our system's Limit of Detection. Our results illustrate the suitability of such an approach and call for further work toward formalisms enabling the formal verification of systems including biomolecular components

    Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    Get PDF
    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Integrating IVHM and asset design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collecting of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Ancient and historical systems

    Get PDF

    Experimental Validation of Multiphase Flow Models and Testing of Multiphase Flow Meters: A Critical Review of Flow Loops Worldwide

    Get PDF
    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area

    Experimental validation of multiphase flow models and testing of multiphase flow meters: A critical review of flow loops worldwide

    Get PDF
    Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area

    Exploring the relationship between the Engineering and Physical Sciences and the Health and Life Sciences by advanced bibliometric methods

    Get PDF
    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection
    corecore