5,106 research outputs found

    End-to-End Simulation of 5G mmWave Networks

    Full text link
    Due to its potential for multi-gigabit and low latency wireless links, millimeter wave (mmWave) technology is expected to play a central role in 5th generation cellular systems. While there has been considerable progress in understanding the mmWave physical layer, innovations will be required at all layers of the protocol stack, in both the access and the core network. Discrete-event network simulation is essential for end-to-end, cross-layer research and development. This paper provides a tutorial on a recently developed full-stack mmWave module integrated into the widely used open-source ns--3 simulator. The module includes a number of detailed statistical channel models as well as the ability to incorporate real measurements or ray-tracing data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and highly customizable, making it easy to integrate algorithms or compare Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example. The module is interfaced with the core network of the ns--3 Long Term Evolution (LTE) module for full-stack simulations of end-to-end connectivity, and advanced architectural features, such as dual-connectivity, are also available. To facilitate the understanding of the module, and verify its correct functioning, we provide several examples that show the performance of the custom mmWave stack as well as custom congestion control algorithms designed specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and Tutorials (revised Jan. 2018

    Adaptive multi-PHY IEEE802.15.4 TSCH in sub-GHz industrial wireless networks

    Get PDF
    To provide wireless coverage in challenging industrial environments, IEEE802.15.4 Time-Slotted Channel Hopping (TSCH) presents a robust medium access protocol. Using multiple Physical Layers (PHYs) could improve TSCH even more in these heterogeneous environments. However, TSCH only defines one fixedduration timeslot structure allowing one packet transmission. Using multiple PHYs with various data rates therefore does not yield any improvements because of this single-packet limitation combined with a fixed slot duration. We therefore defined two alternative timeslot structures allowing multiple packets transmissions to increase the throughput for higher data rate PHYs while meeting a fixed slot duration. In addition, we developed a flexible Link Quality Estimation (LQE) technique to dynamically switch between PHYs depending on the current environment. This paper covers a theoretical evaluation of the proposed slot structures in terms of throughput, energy consumption and memory constraints backed with an experimental validation, using a proof-of-concept implementation, which includes topology and PHY switching. Our results show that a 153% higher net throughput can be obtained with 84% of the original energy consumption and confirm our theoretical evaluation with a 99 % accuracy. Additionally, we showed that in a real-life testbed of 33 nodes, spanning three floors and covering 2550 m(2), a compact multi-PHY TSCH network can be formed. By distinguishing between reliable and high throughput PHYs, a maximum hop count of three was achieved with a maximum throughput of 219 kbps. Consequently, using multiple (dynamic) PHYs in a single TSCH network is possible while still being backwards compatible to the original fixed slot duration TSCH standard

    A Dual-Mode Adaptive MAC Protocol for Process Control in Industrial Wireless Sensor Networks

    Get PDF
    Doktorgradsavhandling ved Fakultet for teknologi og realfag, Universitetet i Agder, 2017Wireless Sensor Networks (WSNs) consist of sensors and actuators operating together to provide monitoring and control services. These services are used in versatile applications ranging from environmental monitoring t oindustrial automation applications. Industrial Wireless Sensor Network (IWSN) is a sub domain of the WSN domain, focussing the industrial monitoring and automation applications. The IWSN domain differs from the generic WSN domains in terms of its requirements. General IWSN requirements include: energy efficiency and quality of service, and strict requirements are imposed on the quality of service expected by IWSN applications. Quality of service in particular relates to reliability, robustness, and predictability. Medium Access Control (MAC) protocols in an IWSN solution are responsible for managing radio communications, the main consumer of power in every IWSN element. With proper measures, MAC protocols can provide energy efficient solutions along with required quality of service for process control applications. The first goal of the thesis was to assess the possibility of creating a MAC protocol exploiting properties of the application domain, the process control domain. This resulted in the creation of the Dual-Mode Adaptive Medium Access Control Protocol (DMAMAC) which constitutes the main contribution of this thesis. The DMAMAC protocol is energy efficient,while preserving real-time requirements, and is robust to packet failure. This has been guaranteed by the thorough evaluation of the protocol via simulation, verification, and implementation with deployment testing. In parallel, we also investigated the possibility of using an alternative development approach for MAC protocols. Specifically, we have proposed a development approach based on MAC protocol model in CPN tools. The development approach consists of automatic code generation for the MiXiM simulation tool and the TinyOS platform. We used the related GinMAC protocol as a running example for the development approach. The generated code for MiXiM simulation platform and the TinyOS implementation platform are evaluated via simulation and deployment respectively. This results in a faster design to implementation time, and closely related protocol artifacts, improving on the traditional approach

    Hunting the hunters:Wildlife Monitoring System

    Get PDF

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    A cross-layer approach to increase spatial reuse and throughput for ad hoc networks

    Get PDF
    Ad hoc networks employing adaptive-transmission protocols can alter transmission parameters to suit the channel environment. Channel-access mechanisms are used to govern temporal use of the transmission medium amongst nodes. Effective operation of a channel-access mechanism can improve the ability of an adaptive-transmission protocol to accommodate changing channel conditions. The interoperability of these two mechanisms motivates cross-layer design of adaptive-transmission protocols. In this thesis we examine the integration of a new channel-access mechanism with a physical-layer adaptive-transmission protocol to create a cross-layer protocol with enhanced capabilities. We derive specific physical-layer measurements which are used to control channel-access behavior in a distributed manner. We propose a distributed heuristic using cross-layer information to drive a channel-access protocol which works in conjunction with an adaptive-transmission protocol. We show that the new protocol outperforms statically configured transmission protocols as well as protocols which act independently of cross-layer enhancements

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201
    corecore