256 research outputs found

    A FIREWALL MODEL OF FILE SYSTEM SECURITY

    Get PDF
    File system security is fundamental to the security of UNIX and Linux systems since in these systems almost everything is in the form of a file. To protect the system files and other sensitive user files from unauthorized accesses, certain security schemes are chosen and used by different organizations in their computer systems. A file system security model provides a formal description of a protection system. Each security model is associated with specified security policies which focus on one or more of the security principles: confidentiality, integrity and availability. The security policy is not only about “who” can access an object, but also about “how” a subject can access an object. To enforce the security policies, each access request is checked against the specified policies to decide whether it is allowed or rejected. The current protection schemes in UNIX/Linux systems focus on the access control. Besides the basic access control scheme of the system itself, which includes permission bits, setuid and seteuid mechanism and the root, there are other protection models, such as Capabilities, Domain Type Enforcement (DTE) and Role-Based Access Control (RBAC), supported and used in certain organizations. These models protect the confidentiality of the data directly. The integrity of the data is protected indirectly by only allowing trusted users to operate on the objects. The access control decisions of these models depend on either the identity of the user or the attributes of the process the user can execute, and the attributes of the objects. Adoption of these sophisticated models has been slow; this is likely due to the enormous complexity of specifying controls over a large file system and the need for system administrators to learn a new paradigm for file protection. We propose a new security model: file system firewall. It is an adoption of the familiar network firewall protection model, used to control the data that flows between networked computers, toward file system protection. This model can support decisions of access control based on any system generated attributes about the access requests, e.g., time of day. The access control decisions are not on one entity, such as the account in traditional discretionary access control or the domain name in DTE. In file system firewall, the access decisions are made upon situations on multiple entities. A situation is programmable with predicates on the attributes of subject, object and the system. File system firewall specifies the appropriate actions on these situations. We implemented the prototype of file system firewall on SUSE Linux. Preliminary results of performance tests on the prototype indicate that the runtime overhead is acceptable. We compared file system firewall with TE in SELinux to show that firewall model can accommodate many other access control models. Finally, we show the ease of use of firewall model. When firewall system is restricted to specified part of the system, all the other resources are not affected. This enables a relatively smooth adoption. This fact and that it is a familiar model to system administrators will facilitate adoption and correct use. The user study we conducted on traditional UNIX access control, SELinux and file system firewall confirmed that. The beginner users found it easier to use and faster to learn then traditional UNIX access control scheme and SELinux

    A Sustainable Approach to Security and Privacy in Health Information Systems

    Get PDF
    This paper identifies and discusses recent information privacy violations or weaknesses which have been found in national infrastructure systems in Australia, the United Kingdom (UK) and the United States of America (USA), two of which involve departments of health and social services. The feasibility of health information systems (HIS) based upon intrinsically more secure technological architectures than those in general use in today\u27s marketplace is investigated. We propose a viable and sustainable IT solution which addresses the privacy and security concerns at all levels in HIS with a focus on trustworthy access control mechanisms

    Group Scheduling in SELinux to Mitigate CPU-Focused Denial of Service Attacks

    Get PDF
    Popular security techniques such as public-private key encryption, firewalls, and role-based access control offer significant protec-tion of system data, but offer only limited protection of the computations using that data from significant interference due to accident or adversarial attack. However, in an increasing number of modern systems, ensuring the reliable execution of system activities is every bit as important as ensuring data security. This paper makes three contributions to the state of the art in protection of the execution of system activities from accidental or adversarial interference. First, we consider the motivating problem of CPU-focused denial of service attacks, and explain how limitations of current approaches to these kinds of attacks make it difficult to offer sufficiently rigorous and fine-grained assurances of protection for the execution of system computations. Second, we describe a novel solution approach in which we have integrated fine-grained scheduling decision functions with system call hooks from the Security Enhanced Linux (SELinux) framework within the Linux 2.6 kernel. Third, we present empirical evaluations of the efficacy of our approach in controlling the CPU utilization of competing greedy computations that are either completely CPU bound, or that interleave I/O and CPU access, across a range of relative allocations of the CPU
    corecore