39,585 research outputs found

    Feature and viewpoint selection for industrial car assembly

    Get PDF
    Abstract. Quality assurance programs of today’s car manufacturers show increasing demand for automated visual inspection tasks. A typical example is just-in-time checking of assemblies along production lines. Since high throughput must be achieved, object recognition and pose estimation heavily rely on offline preprocessing stages of available CAD data. In this paper, we propose a complete, universal framework for CAD model feature extraction and entropy index based viewpoint selection that is developed in cooperation with a major german car manufacturer

    Software Verification and Graph Similarity for Automated Evaluation of Students' Assignments

    Get PDF
    In this paper we promote introducing software verification and control flow graph similarity measurement in automated evaluation of students' programs. We present a new grading framework that merges results obtained by combination of these two approaches with results obtained by automated testing, leading to improved quality and precision of automated grading. These two approaches are also useful in providing a comprehensible feedback that can help students to improve the quality of their programs We also present our corresponding tools that are publicly available and open source. The tools are based on LLVM low-level intermediate code representation, so they could be applied to a number of programming languages. Experimental evaluation of the proposed grading framework is performed on a corpus of university students' programs written in programming language C. Results of the experiments show that automatically generated grades are highly correlated with manually determined grades suggesting that the presented tools can find real-world applications in studying and grading

    Joint Prediction of Depths, Normals and Surface Curvature from RGB Images using CNNs

    Full text link
    Understanding the 3D structure of a scene is of vital importance, when it comes to developing fully autonomous robots. To this end, we present a novel deep learning based framework that estimates depth, surface normals and surface curvature by only using a single RGB image. To the best of our knowledge this is the first work to estimate surface curvature from colour using a machine learning approach. Additionally, we demonstrate that by tuning the network to infer well designed features, such as surface curvature, we can achieve improved performance at estimating depth and normals.This indicates that network guidance is still a useful aspect of designing and training a neural network. We run extensive experiments where the network is trained to infer different tasks while the model capacity is kept constant resulting in different feature maps based on the tasks at hand. We outperform the previous state-of-the-art benchmarks which jointly estimate depths and surface normals while predicting surface curvature in parallel
    corecore