178,751 research outputs found

    Model-based Methods of Classification: Using the mclust Software in Chemometrics

    Get PDF
    Due to recent advances in methods and software for model-based clustering, and to the interpretability of the results, clustering procedures based on probability models are increasingly preferred over heuristic methods. The clustering process estimates a model for the data that allows for overlapping clusters, producing a probabilistic clustering that quantifies the uncertainty of observations belonging to components of the mixture. The resulting clustering model can also be used for some other important problems in multivariate analysis, including density estimation and discriminant analysis. Examples of the use of model-based clustering and classification techniques in chemometric studies include multivariate image analysis, magnetic resonance imaging, microarray image segmentation, statistical process control, and food authenticity. We review model-based clustering and related methods for density estimation and discriminant analysis, and show how the R package mclust can be applied in each instance.

    Feature Selection and Overlapping Clustering-Based Multilabel Classification Model

    Get PDF
    Multilabel classification (MLC) learning, which is widely applied in real-world applications, is a very important problem in machine learning. Some studies show that a clustering-based MLC framework performs effectively compared to a nonclustering framework. In this paper, we explore the clustering-based MLC problem. Multilabel feature selection also plays an important role in classification learning because many redundant and irrelevant features can degrade performance and a good feature selection algorithm can reduce computational complexity and improve classification accuracy. In this study, we consider feature dependence and feature interaction simultaneously, and we propose a multilabel feature selection algorithm as a preprocessing stage before MLC. Typically, existing cluster-based MLC frameworks employ a hard cluster method. In practice, the instances of multilabel datasets are distinguished in a single cluster by such frameworks; however, the overlapping nature of multilabel instances is such that, in real-life applications, instances may not belong to only a single class. Therefore, we propose a MLC model that combines feature selection with an overlapping clustering algorithm. Experimental results demonstrate that various clustering algorithms show different performance for MLC, and the proposed overlapping clustering-based MLC model may be more suitable

    A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks

    Get PDF
    This paper presents a novel spectral algorithm with additive clustering designed to identify overlapping communities in networks. The algorithm is based on geometric properties of the spectrum of the expected adjacency matrix in a random graph model that we call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that does not require the knowledge of the number of hidden communities, is proved to be consistent under the SBMO when the degrees in the graph are (slightly more than) logarithmic. The algorithm is shown to perform well on simulated data and on real-world graphs with known overlapping communities.Comment: Journal of Theoretical Computer Science (TCS), Elsevier, A Para\^itr

    Model Selection in Overlapping Stochastic Block Models

    Full text link
    Networks are a commonly used mathematical model to describe the rich set of interactions between objects of interest. Many clustering methods have been developed in order to partition such structures, among which several rely on underlying probabilistic models, typically mixture models. The relevant hidden structure may however show overlapping groups in several applications. The Overlapping Stochastic Block Model (2011) has been developed to take this phenomenon into account. Nevertheless, the problem of the choice of the number of classes in the inference step is still open. To tackle this issue, we consider the proposed model in a Bayesian framework and develop a new criterion based on a non asymptotic approximation of the marginal log-likelihood. We describe how the criterion can be computed through a variational Bayes EM algorithm, and demonstrate its efficiency by running it on both simulated and real data.Comment: articl

    Model-based Methods of Classification: Using the mclust Software in Chemometrics

    Get PDF
    Due to recent advances in methods and software for model-based clustering, and to the interpretability of the results, clustering procedures based on probability models are increasingly preferred over heuristic methods. The clustering process estimates a model for the data that allows for overlapping clusters, producing a probabilistic clustering that quantifies the uncertainty of observations belonging to components of the mixture. The resulting clustering model can also be used for some other important problems in multivariate analysis, including density estimation and discriminant analysis. Examples of the use of model-based clustering and classification techniques in chemometric studies include multivariate image analysis, magnetic resonance imaging, microarray image segmentation, statistical process control, and food authenticity. We review model-based clustering and related methods for density estimation and discriminant analysis, and show how the R package mclust can be applied in each instance

    Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker Speech Separation

    Full text link
    We propose a novel deep learning model, which supports permutation invariant training (PIT), for speaker independent multi-talker speech separation, commonly known as the cocktail-party problem. Different from most of the prior arts that treat speech separation as a multi-class regression problem and the deep clustering technique that considers it a segmentation (or clustering) problem, our model optimizes for the separation regression error, ignoring the order of mixing sources. This strategy cleverly solves the long-lasting label permutation problem that has prevented progress on deep learning based techniques for speech separation. Experiments on the equal-energy mixing setup of a Danish corpus confirms the effectiveness of PIT. We believe improvements built upon PIT can eventually solve the cocktail-party problem and enable real-world adoption of, e.g., automatic meeting transcription and multi-party human-computer interaction, where overlapping speech is common.Comment: 5 page

    Bayesian-OverDBC: A Bayesian Density-Based Approach for Modeling Overlapping Clusters

    Get PDF
    Although most research in density-based clustering algorithms focused on finding distinct clusters, many real-world applications (such as gene functions in a gene regulatory network) have inherently overlapping clusters. Even with overlapping features, density-based clustering methods do not define a probabilistic model of data. Therefore, it is hard to determine how “good” clustering, predicting, and clustering new data into existing clusters are. Therefore, a probability model for overlap density-based clustering is a critical need for large data analysis. In this paper, a new Bayesian density-based method (Bayesian-OverDBC) for modeling the overlapping clusters is presented. Bayesian-OverDBC can predict the formation of a new cluster. It can also predict the overlapping of cluster with existing clusters. Bayesian-OverDBC has been compared with other algorithms (nonoverlapping and overlapping models). The results show that Bayesian-OverDBC can be significantly better than other methods in analyzing microarray data
    • 

    corecore