603 research outputs found

    An Intelligent Monitoring Interface for a Coal-Fired Power Plant Boiler Trips

    Get PDF
    A power plant monitoring system embedded with artificial intelligence can enhance its effectiveness by reducing the time spent in trip analysis and follow up procedures. Experimental results showed that Multilayered perceptron neural network trained with Levenberg-Marquardt (LM) algorithm achieved the least mean squared error of 0.0223 with the misclassification rate of 7.435% for the 10 simulated trip prediction. The proposed method can identify abnormality of operational parameters at the confident level of ±6.3%

    EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    Full text link

    Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen

    Full text link

    Modeling and Simulation of Components in an Integrated Gasification Combined Cycle Plant for Developing Sensor Networks to Detect Faults

    Get PDF
    The goal of this work is to help synthesize a sensor network to detect and diagnose faults and to monitor conditions of the key equipment items. The desired algorithm for sensor network design would provide information about the number, type and location of sensors that should be deployed for fault diagnosis and condition monitoring of a plant. In this work, the focus was on the integrated gasification combined cycle (IGCC) power plant where the faults at the equipment level and the plant level are considered separately. At the plant level, the objective is to observe whether a fault has occurred or not and identify the specific fault. For component-level faults, the objective is to obtain quantitative information about the extent of a particular fault. For the model-based sensor network design, high-fidelity process model of the IGCC plant is the key requirement.;For component level sensor placement, high-fidelity partial differential algebraic equation (PDAE)-based models are developed. Mechanistic models for faults are developed and included in the PDAE-based models. For system-level sensor placement, faults are simulated in the IGCC plant and the dynamic response of the process is captured. Both the steady-state and dynamic information are used to generate markers that are then utilized for sensor network design.;Whether faults in a particular equipment item should be considered at the unit level or system level depend on the criticality of the equipment item, its likelihood to failure, and the resolution desired for specific faults. In this work, the sour water gas shift reactor (SWGSR) and the gasifier are considered at the unit level. Fly ash may get deposited on the SWGSR catalyst and in the voids in the SWGSR resulting in decreased conversion of carbon monoxide. A MATLAB-based PDAE model of the SWGSR has been developed that considers key faults such as changes in the porosity, surface area, and catalyst activity. In a slagging gasifier, the molten slag that flows along the inner wall can penetrate into the refractory layer, and due to chemical corrosion and thermal and mechanical stress eventually result in thinning or spalling of the refractory. Extent of penetration of slag into the refractory wall and the spalling of the refractory are considered to be important variables for condition monitoring of the gasifier. In addition, as an increasing slag layer thickness can eventually lead to shutdown of the gasifier yet the slag layer thickness cannot be directly measured using the current measurement technology, slag layer thickness is also considered to be an important variable for condition monitoring. For capturing the slag formation, and detachment phenomena accurately, a novel hybrid shrinking core-shrinking particle (HSCSP) model is developed. For tracking the detached slag droplets and the char particles along the gasifier, a particle model is developed and integrated with the HSCSP model. A slag model is developed that captures the process of the detachment of the slag droplets from the char surface, transport of the droplets towards the wall, deposition of a fraction of the droplets on the wall and formation of a slag layer on the wall. Finally, a refractory degradation model is developed for calculating the penetration of the slag inside the wall and the size and time for a spall to occur due to the combined effects of volume change as a result of slag penetration as well as thermal and mechanical stresses.;System-level models are enhanced and faults are simulated spanning across various sections of the IGCC plant. For example, in the SELEXOL-based acid gas removal unit the available area in the trays of distillation columns may get reduced due to deposition of solids. This can result in loss of efficiency. Leakages in heat exchangers in this unit can result in the loss of expensive solvent or hazardous gases. In the combined cycle section, faults such as leakages and fouling in the heat exchangers, increased loss of heat through the combustor insulation that can result in loss of efficiency are simulated.;Sensor placement using a two-tier approach is also performed by developing a sensor network for a combined system that includes unit level as well as system level faults. A model of the gasification island is developed by integrating the SWGSR model developed in MATLAB with the model of the rest of the plant developed in Aspen Plus Dynamics. Since the two models are developed using different software platforms, an integration framework is developed that couples and synchronizes the two dynamic models. The sensor network obtained using the models developed in this work is found to be effective in observing and resolving faults both at the unit level as well as the plant level. (Abstract shortened by UMI.)

    Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    Get PDF
    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilatin

    Advanced emissions control development project. Phase I, Final report, November 1, 1993--February 19, 1996

    Full text link

    Assessment of Some Performance Characteristics of Refuse Boiler Before and After Overhaul Using Failure Mode Effect and Fault Tree Analyses

    Get PDF
    A pioneer palm oil boiler unit, in an immense power self-contained oil mill, impaired by many years of accumulated depreciation, was rebuilt in the pattern of a design-out scheme aimed primarily at rehabilitating the entire boiler system to a state of functionality. The research work studied the pre-maintenance and post maintenance performance relativities through statistical analysis of data collected and also developed Failure Mode and Effect Analysis (FMEA), and Fault Tree Analysis (FTA) worksheets for the boiler unit. It is hypothesized that the pressure build up and discharge rates in a boiler system is normally distributed under normal operational mode. The effectiveness of the maintenance work carried out on the boiler enhanced the processing capability of the entire plant. The study revealed that under a single shift operating mode (8 hours), a time saving of 72 minutes arising from the effectiveness of the plant overhaul carried out is achieved
    • …
    corecore