15,175 research outputs found

    Improving Facial Attribute Prediction using Semantic Segmentation

    Full text link
    Attributes are semantically meaningful characteristics whose applicability widely crosses category boundaries. They are particularly important in describing and recognizing concepts where no explicit training example is given, \textit{e.g., zero-shot learning}. Additionally, since attributes are human describable, they can be used for efficient human-computer interaction. In this paper, we propose to employ semantic segmentation to improve facial attribute prediction. The core idea lies in the fact that many facial attributes describe local properties. In other words, the probability of an attribute to appear in a face image is far from being uniform in the spatial domain. We build our facial attribute prediction model jointly with a deep semantic segmentation network. This harnesses the localization cues learned by the semantic segmentation to guide the attention of the attribute prediction to the regions where different attributes naturally show up. As a result of this approach, in addition to recognition, we are able to localize the attributes, despite merely having access to image level labels (weak supervision) during training. We evaluate our proposed method on CelebA and LFWA datasets and achieve superior results to the prior arts. Furthermore, we show that in the reverse problem, semantic face parsing improves when facial attributes are available. That reaffirms the need to jointly model these two interconnected tasks

    Process of image super-resolution

    Full text link
    In this paper we explain a process of super-resolution reconstruction allowing to increase the resolution of an image.The need for high-resolution digital images exists in diverse domains, for example the medical and spatial domains. The obtaining of high-resolution digital images can be made at the time of the shooting, but it is often synonymic of important costs because of the necessary material to avoid such costs, it is known how to use methods of super-resolution reconstruction, consisting from one or several low resolution images to obtain a high-resolution image. The american patent US 9208537 describes such an algorithm. A zone of one low-resolution image is isolated and categorized according to the information contained in pixels forming the borders of the zone. The category of it zone determines the type of interpolation used to add pixels in aforementioned zone, to increase the neatness of the images. It is also known how to reconstruct a low-resolution image there high-resolution image by using a model of super-resolution reconstruction whose learning is based on networks of neurons and on image or a picture library. The demand of chinese patent CN 107563965 and the scientist publication "Pixel Recursive Super Resolution", R. Dahl, M. Norouzi, J. Shlens propose such methods. The aim of this paper is to demonstrate that it is possible to reconstruct coherent human faces from very degraded pixelated images with a very fast algorithm, more faster than compressed sensing (CS), easier to compute and without deep learning, so without important technology resources, i.e. a large database of thousands training images (see arXiv:2003.13063). This technological breakthrough has been patented in 2018 with the demand of French patent FR 1855485 (https://patents.google.com/patent/FR3082980A1, see the HAL reference https://hal.archives-ouvertes.fr/hal-01875898v1).Comment: 19 pages, 10 figure

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure
    corecore