90,282 research outputs found

    Model-based clustering via linear cluster-weighted models

    Full text link
    A novel family of twelve mixture models with random covariates, nested in the linear tt cluster-weighted model (CWM), is introduced for model-based clustering. The linear tt CWM was recently presented as a robust alternative to the better known linear Gaussian CWM. The proposed family of models provides a unified framework that also includes the linear Gaussian CWM as a special case. Maximum likelihood parameter estimation is carried out within the EM framework, and both the BIC and the ICL are used for model selection. A simple and effective hierarchical random initialization is also proposed for the EM algorithm. The novel model-based clustering technique is illustrated in some applications to real data. Finally, a simulation study for evaluating the performance of the BIC and the ICL is presented

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Flexible Mixture Modeling with the Polynomial Gaussian Cluster-Weighted Model

    Full text link
    In the mixture modeling frame, this paper presents the polynomial Gaussian cluster-weighted model (CWM). It extends the linear Gaussian CWM, for bivariate data, in a twofold way. Firstly, it allows for possible nonlinear dependencies in the mixture components by considering a polynomial regression. Secondly, it is not restricted to be used for model-based clustering only being contextualized in the most general model-based classification framework. Maximum likelihood parameter estimates are derived using the EM algorithm and model selection is carried out using the Bayesian information criterion (BIC) and the integrated completed likelihood (ICL). The paper also investigates the conditions under which the posterior probabilities of component-membership from a polynomial Gaussian CWM coincide with those of other well-established mixture-models which are related to it. With respect to these models, the polynomial Gaussian CWM has shown to give excellent clustering and classification results when applied to the artificial and real data considered in the paper
    corecore