20,927 research outputs found

    Automatic Generation of Integration and Preprocessing Ontologies for Biomedical Sources in a Distributed Scenario

    Full text link
    Access to a large number of remote data sources has boosted research in biomedicine, where different biological and clinical research projects are based on collaborative efforts among international organizations. In this scenario, the authors have developed various methods and tools in the area of database integration, using an ontological approach. This paper describes a method to automatically generate preprocessing structures (ontologies) within an ontology-based KDD model. These ontologies are obtained from the analysis of data sources, searching for: (i) valid numerical ranges (using clustering techniques), (ii) different scales, (iii) synonym transformations based on known dictionaries and (iv)typographical errors. To test the method, experiments were carried out with four biomedical databases―containing rheumatoid arthritis, gene expression patterns, biological processes and breast cancer patients― proving the performance of the approach. This method supports experts in data analysis processes, facilitating the detection of inconsistencies

    Sparse machine learning models in bioinformatics

    Get PDF
    The meaning of parsimony is twofold in machine learning: either the structure or (and) the parameter of a model can be sparse. Sparse models have many strengths. First, sparsity is an important regularization principle to reduce model complexity and therefore avoid overfitting. Second, in many fields, for example bioinformatics, many high-dimensional data may be generated by a very few number of hidden factors, thus it is more reasonable to use a proper sparse model than a dense model. Third, a sparse model is often easy to interpret. In this dissertation, we investigate the sparse machine learning models and their applications in high-dimensional biological data analysis. We focus our research on five types of sparse models as follows. First, sparse representation is a parsimonious principle that a sample can be approximated by a sparse linear combination of basis vectors. We explore existing sparse representation models and propose our own sparse representation methods for high dimensional biological data analysis. We derive different sparse representation models from a Bayesian perspective. Two generic dictionary learning frameworks are proposed. Also, kernel and supervised dictionary learning approaches are devised. Furthermore, we propose fast active-set and decomposition methods for the optimization of sparse coding models. Second, gene-sample-time data are promising in clinical study, but challenging in computation. We propose sparse tensor decomposition methods and kernel methods for the dimensionality reduction and classification of such data. As the extensions of matrix factorization, tensor decomposition techniques can reduce the dimensionality of the gene-sample-time data dramatically, and the kernel methods can run very efficiently on such data. Third, we explore two sparse regularized linear models for multi-class problems in bioinformatics. Our first method is called the nearest-border classification technique for data with many classes. Our second method is a hierarchical model. It can simultaneously select features and classify samples. Our experiment, on breast tumor subtyping, shows that this model outperforms the one-versus-all strategy in some cases. Fourth, we propose to use spectral clustering approaches for clustering microarray time-series data. The approaches are based on two transformations that have been recently introduced, especially for gene expression time-series data, namely, alignment-based and variation-based transformations. Both transformations have been devised in order to take into account temporal relationships in the data, and have been shown to increase the ability of a clustering method in detecting co-expressed genes. We investigate the performances of these transformations methods, when combined with spectral clustering on two microarray time-series datasets, and discuss their strengths and weaknesses. Our experiments on two well known real-life datasets show the superiority of the alignment-based over the variation-based transformation for finding meaningful groups of co-expressed genes. Fifth, we propose the max-min high-order dynamic Bayesian network (MMHO-DBN) learning algorithm, in order to reconstruct time-delayed gene regulatory networks. Due to the small sample size of the training data and the power-low nature of gene regulatory networks, the structure of the network is restricted by sparsity. We also apply the qualitative probabilistic networks (QPNs) to interpret the interactions learned. Our experiments on both synthetic and real gene expression time-series data show that, MMHO-DBN can obtain better precision than some existing methods, and perform very fast. The QPN analysis can accurately predict types of influences and synergies. Additionally, since many high dimensional biological data are subject to missing values, we survey various strategies for learning models from incomplete data. We extend the existing imputation methods, originally for two-way data, to methods for gene-sample-time data. We also propose a pair-wise weighting method for computing kernel matrices from incomplete data. Computational evaluations show that both approaches work very robustly

    Joint Clustering and Registration of Functional Data

    Full text link
    Curve registration and clustering are fundamental tools in the analysis of functional data. While several methods have been developed and explored for either task individually, limited work has been done to infer functional clusters and register curves simultaneously. We propose a hierarchical model for joint curve clustering and registration. Our proposal combines a Dirichlet process mixture model for clustering of common shapes, with a reproducing kernel representation of phase variability for registration. We show how inference can be carried out applying standard posterior simulation algorithms and compare our method to several alternatives in both engineered data and a benchmark analysis of the Berkeley growth data. We conclude our investigation with an application to time course gene expression

    Model-based clustering with data correction for removing artifacts in gene expression data

    Full text link
    The NIH Library of Integrated Network-based Cellular Signatures (LINCS) contains gene expression data from over a million experiments, using Luminex Bead technology. Only 500 colors are used to measure the expression levels of the 1,000 landmark genes measured, and the data for the resulting pairs of genes are deconvolved. The raw data are sometimes inadequate for reliable deconvolution leading to artifacts in the final processed data. These include the expression levels of paired genes being flipped or given the same value, and clusters of values that are not at the true expression level. We propose a new method called model-based clustering with data correction (MCDC) that is able to identify and correct these three kinds of artifacts simultaneously. We show that MCDC improves the resulting gene expression data in terms of agreement with external baselines, as well as improving results from subsequent analysis.Comment: 28 page

    Learning Latent Representations of Bank Customers With The Variational Autoencoder

    Get PDF
    Learning data representations that reflect the customers' creditworthiness can improve marketing campaigns, customer relationship management, data and process management or the credit risk assessment in retail banks. In this research, we adopt the Variational Autoencoder (VAE), which has the ability to learn latent representations that contain useful information. We show that it is possible to steer the latent representations in the latent space of the VAE using the Weight of Evidence and forming a specific grouping of the data that reflects the customers' creditworthiness. Our proposed method learns a latent representation of the data, which shows a well-defied clustering structure capturing the customers' creditworthiness. These clusters are well suited for the aforementioned banks' activities. Further, our methodology generalizes to new customers, captures high-dimensional and complex financial data, and scales to large data sets.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0253

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Analyzing Multiple-Probe Microarray: Estimation and Application of Gene Expression Indexes

    Get PDF
    Gene expression index estimation is an essential step in analyzing multiple probe microarray data. Various modeling methods have been proposed in this area. Amidst all, a popular method proposed in Li and Wong (2001) is based on a multiplicative model, which is similar to the additive model discussed in Irizarry et al. (2003a) at the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation to improve expression index estimation based on an ad hoc entropy criteria and naive grid search approach. In this work, we re-examined this problem using a new profile likelihood-based transformation estimation approach that is more statistically elegant and computationally efficient. We demonstrate the applicability of the proposed method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We introduced a new multivariate expression index and used the empirical study to shows its promise in terms of improving model fitting and power of detecting differential expression over the commonly used univariate expression index. As the other important content of the work, we discussed two generally encountered practical issues in application of gene expression index: normalization and summary statistic used for detecting differential expression. Our empirical study shows somewhat different findings from the MAQC project (MAQC, 2006)
    • …
    corecore