486 research outputs found

    Identification of Different Donor-Acceptor Structures via Förster Resonance Energy Transfer (FRET) in Quantum-Dot-Perylene Bisimide Assemblies

    Get PDF
    Nanoassemblies are formed via self-assembly of ZnS capped CdSe quantum dots (QD) and perylene bisimide (PBI) dyes. Upon assembly formation the QD photoluminescence is quenched, as can be detected both via single particle detection and ensemble experiments in solution. Quenching has been assigned to FRET and NON-FRET processes. Analysis of FRET allows for a distinction between different geometries of the QD dye assemblies. Time-resolved single molecule spectroscopy reveals intrinsic fluctuations of the PBI fluorescence lifetime and spectrum, caused by rearrangement of the phenoxy side groups. The distribution of such molecular conformations and their changed dynamics upon assembly formation are discussed in the scope of FRET efficiency and surface ligand density

    Heat Transfer Mechanism In Particle-Laden Turbulent Shearless Flows

    Get PDF
    Particle-laden turbulent flows are one of the complex flow regimes involved in a wide range of environmental, industrial, biomedical and aeronautical applications. Recently the interest has included also the interaction between scalars and particles, and the complex scenario which arises from the interaction of particle finite inertia, temperature transport, and momentum and heat feedback of particles on the flow leads to a multi-scale and multi-physics phenomenon which is not yet fully understood. The present work aims to investigate the fluid-particle thermal interaction in turbulent mixing under one-way and two-way coupling regimes. A recent novel numerical framework has been used to investigate the impact of suspended sub-Kolmogorov inertial particles on heat transfer within the mixing layer which develops at the interface of two regions with different temperature in an isotropic turbulent flow. Temperature has been considered a passive scalar, advected by the solenoidal velocity field, and subject to the particle thermal feedback in the two-way regime. A self-similar stage always develops where all single-point statistics of the carrier fluid and the suspended particles collapse when properly re-scaled. We quantify the effect of particle inertial, parametrized through the Stokes and thermal Stokes numbers, on the heat transfer through the Nusselt number, defined as the ratio of the heat transfer to the thermal diffusion. A scale analysis will be presented. We show how the modulation of fluid temperature gradients due to the statistical alignments of the particle velocity and the local carrier flow temperature gradient field, impacts the overall heat transfer in the two-way coupling regime

    A Comprehensive Method For Coordinating Distributed Energy Resources In A Power Distribution System

    Get PDF
    Utilities, faced with increasingly limited resources, strive to maintain high levels of reliability in energy delivery by adopting improved methodologies in planning, operation, construction and maintenance. On the other hand, driven by steady research and development and increase in sales volume, the cost of deploying PV systems has been in constant decline since their first introduction to the market. The increased level of penetration of distributed energy resources in power distribution infrastructure presents various benefits such as loss reduction, resilience against cascading failures and access to more diversified resources. However, serious challenges and risks must be addressed to ensure continuity and reliability of service. By integrating necessary communication and control infrastructure into the distribution system, to develop a practically coordinated system of distributed resources, controllable load/generation centers will be developed which provide substantial flexibility for the operation of the distribution system. On the other hand, such a complex distributed system is prone to instability and black outs due to lack of a major infinite supply and other unpredicted variations in load and generation, which must be addressed. To devise a comprehensive method for coordination between Distributed Energy Resources in order to achieve a collective goal, is the key point to provide a fully functional and reliable power distribution system incorporating distributed energy resources. A road map to develop such comprehensive coordination system is explained and supporting scenarios and their associated simulation results are then elaborated. The proposed road map describes necessary steps to build a comprehensive solution for coordination between multiple agents in a microgrid or distribution feeder.\u2

    Doctor of Philosophy

    Get PDF
    dissertationThe optoelectronic properties of nanoscale metal and semiconductor material systems are notably sensitive to their corresponding physical structure. Contemporary synthesis techniques enable careful control of nanoparticle con figurations and therefore provide a wide array of systems where the eff ects of physical morphology on the interaction between nanoscale materials and light can be carefully probed. The investigated properties are immediately relevant to light-harvesting and ultra-sensitive trace-analysis and sensing applications. In this work, the structure-property relationships of both individual semiconductor nanocrystal heterostructures and aggregates of plasmonic silver nanoparticles in rough metal fi lms are probed. The semiconductor heterostructures behave as model light-harvesting systems where optical energy absorbed by one portion of the structure is funneled, on the nanoscale, to a model light-harvesting center, in analogy to photosynthesis. In the plasmonic silver nanostructures, collective optical excitation of the conduction electrons - plasmons - con es electromagnetic radiation to well beyond the traditional diraction limit of light in nanoscale regions called "hot spots." Within these hot spots, light-matter interactions are greatly enhanced and thus enable trace-sensing applications such as Raman scattering from a single molecule. Thorough application of relatively simple single particle spectroscopy techniques is combined with high resolution electron microscopy to elucidate the subtle details on how physical structure controls the optical properties of both material systems. There are four main results of this work. (1) The linear and nonlinear optical response of rough silver fi lms is shown to be enhanced by the excitation of surface plasmon polaritons. (2) The enhanced nonlinear response of rough metal films is conjectured to originate from metal clusters, and the observation of stark fluctuations in their efficiency of second-harmonic generation is reported for the fi rst time. (3) The presence of and enhanced emission from silver clusters of only a few atoms plays an important role in the intrinsic optical response of the silver films with considerable implications for surface-enhanced Raman scattering. (4) The e ffects of physical anisotropy on the electronic states of semiconductor nanocrystals are explicitly identifi ed through correlated optical and electron microscopy of single particles. These eff ects are shown to have important rami cations in the internal energy-transfer process of single nanocrystals

    Ecology and Conservation of Freshwater Fishes Biodiversity

    Get PDF
    Freshwater fishes are the most diverse vertebrate group, with almost 36,000 species described so far, and more species are being discovered all the time, evenly distributed between marine and freshwater habitats. Freshwater ecosystems serve as a habitat for more than 18,000 fish species, occupying less than 1% of the Earth’s surface. Among all ecosystems, inland waters are one of the most affected. Wetlands are disappearing three times faster than forests, and freshwater populations decrease faster than terrestrial biodiversity. Nowadays, freshwater fishes may be considered the most threatened vertebrate group. Understanding the ecological subjects, environmental necessities, and pressures of freshwater fishes remains a key concern of their conservation biology. This reprint explores the relationships between environmental issues, freshwater fish biodiversity, and human impacts from different perspectives, but always focuses on the conservation biology of species and ecosystems.A change in mindset is needed to protect biodiversity in the upcoming years. Conservation plans have failed because our current knowledge is deficient and needs to be improved. We need countries to commit to protecting biodiversity and develop realistic targets that can be met while compromising with conflicting needs and interests. The articles included in this reprint emphasize the necessity of having more knowledge to develop conservation strategies. Future conservation targets may be advanced in part based on the knowledge provided by these papers and similar studies to ensure the long-term protection of freshwater fish and other life forms

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator

    Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy

    Get PDF
    The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community
    • …
    corecore