5,042 research outputs found

    Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol

    Get PDF
    Bacterial strains that were genetically blocked in important metabolic pathways and grown under selective conditions underwent a process of adaptive evolution: certain pathways may have been deregulated and therefore allowed for the circumvention of the given block. A block of endogenous pyruvate synthesis from glycerol was realized by a knockout of pyruvate kinase and phosphoenolpyruvate carboxylase in E. coli. The resulting mutant strain was able to grow on a medium containing glycerol and lactate, which served as an exogenous pyruvate source. Heterologous expression of a pyruvate carboxylase gene from Corynebacterium glutamicum was used for anaplerosis of the TCA cycle. Selective conditions were controlled in a continuous culture with limited lactate feed and an excess of glycerol feed. After 200–300 generations pyruvate-prototrophic mutants were isolated. The genomic analysis of an evolved strain revealed that the genotypic basis for the regained pyruvate-prototrophy was not obvious. A constraint-based model of the metabolism was employed to compute all possible detours around the given metabolic block by solving a hierarchy of linear programming problems. The regulatory network was expected to be responsible for the adaptation process. Hence, a Boolean model of the transcription factor network was connected to the metabolic model. Our model analysis only showed a marginal impact of transcriptional control on the biomass yield on substrate which is a key variable in the selection process. In our experiment, microarray analysis confirmed that transcriptional control probably played a minor role in the deregulation of the alternative pathways for the circumvention of the block

    \u3ci\u3eEx Uno Plures\u3c/i\u3e: Clonal Reinforcement Drives Evolution of a Simple Microbial Community

    Get PDF
    A major goal of genetics is to define the relationship between phenotype and genotype, while a major goal of ecology is to identify the rules that govern community assembly. Achieving these goals by analyzing natural systems can be difficult, as selective pressures create dynamic fitness landscapes that vary in both space and time. Laboratory experimental evolution offers the benefit of controlling variables that shape fitness landscapes, helping to achieve both goals. We previously showed that a clonal population of E. coli experimentally evolved under continuous glucose limitation gives rise to a genetically diverse community consisting of one clone, CV103, that best scavenges but incompletely utilizes the limiting resource, and others, CV101 and CV116, that consume its overflow metabolites. Because this community can be disassembled and reassembled, and involves cooperative interactions that are stable over time, its genetic diversity is sustained by clonal reinforcement rather than by clonal interference. To understand the genetic factors that produce this outcome, and to illuminate the community’s underlying physiology, we sequenced the genomes of ancestral and evolved clones. We identified ancestral mutations in intermediary metabolism that may have predisposed the evolution of metabolic interdependence. Phylogenetic reconstruction indicates that the lineages that gave rise to this community diverged early, as CV103 shares only one Single Nucleotide Polymorphism with the other evolved clones. Underlying CV103’s phenotype we identified a set of mutations that likely enhance glucose scavenging and maintain redox balance, but may do so at the expense of carbon excreted in overflow metabolites. Because these overflow metabolites serve as growth substrates that are differentially accessible to the other community members, and because the scavenging lineage shares only one SNP with these other clones, we conclude that this lineage likely served as an ‘‘engine’’ generating diversity by creating new metabolic niches, but not the occupants themselves

    Adaptive laboratory evolution principles and applications for biotechnology

    Get PDF
    Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.(VLID)90682

    E Unibus Plurum: Genomic Analysis of an Experimentally Evolved Polymorphism in Escherichia coli

    Get PDF
    Microbial populations founded by a single clone and propagated under resource limitation can become polymorphic. We sought to elucidate genetic mechanisms whereby a polymorphism evolved in Escherichia coli under glucose limitation and persisted because of cross-feeding among multiple adaptive clones. Apart from a 29 kb deletion in the dominant clone, no large-scale genomic changes distinguished evolved clones from their common ancestor. Using transcriptional profiling on co-evolved clones cultured separately under glucose-limitation we identified 180 genes significantly altered in expression relative to the common ancestor grown under similar conditions. Ninety of these were similarly expressed in all clones, and many of the genes affected (e.g., mglBAC, mglD, and lamB) are in operons coordinately regulated by CRP and/or rpoS. While the remaining significant expression differences were clone-specific, 93% were exhibited by the majority clone, many of which are controlled by global regulators, CRP and CpxR. When transcriptional profiling was performed on adaptive clones cultured together, many expression differences that distinguished the majority clone cultured in isolation were absent, suggesting that CpxR may be activated by overflow metabolites removed by cross-feeding strains in co-culture. Relative to their common ancestor, shared expression differences among adaptive clones were partly attributable to early-arising shared mutations in the trans-acting global regulator, rpoS, and the cis-acting regulator, mglO. Gene expression differences that distinguished clones may in part be explained by mutations in trans-acting regulators malT and glpK, and in cis-acting sequences of acs. In the founder, a cis-regulatory mutation in acs (acetyl CoA synthetase) and a structural mutation in glpR (glycerol-3-phosphate repressor) likely favored evolution of specialists that thrive on overflow metabolites. Later-arising mutations that led to specialization emphasize the importance of compensatory rather than gain-of-function mutations in this system. Taken together, these findings underscore the importance of regulatory change, founder genotype, and the biotic environment in the adaptive evolution of microbes

    Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes

    Get PDF
    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem—the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth
    • …
    corecore