27 research outputs found

    A Flexible System for Simulating Aeronautical Telecommunication Network

    Get PDF
    At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator

    Simulating Primary Manufacturing Area (PMA) activities of fixed trailing edge panels production

    Get PDF
    Simulation clearly has the potential to play an important role in manufacturing decision-making at many levels. This simulation study is conducted at the local manufacturing plant that manufactures fixed trailing edge panels for the aerospace industry. The model focused on operational activities at the primary manufacturing area of cutting and laminating of aircraft’s composite parts. The model built was used to investigate a variety of issues, for example to determine the impact of a proposed change, without affecting production.The result shows that when production rate was increased by 20% to investigate the current plant capacity, the current resources capacity was unable to tolerate this increment. From the model experimentation, an increase of 60 minutes working time for ply cutter machines and 75 minutes of lay up operators found to be the best design to meet the expected production throughput and increase resources utilisation

    Fibre Channel Switch Modeling at Fibre Channel-2 Level for Large Fabric Storage Area Network Simulations using OMNeT++

    Get PDF
    Abstract—Typically, in the current enterprise data centers dedicated fabrics or networks are implemented to meet their LAN, Inter-Processor communication and storage traffic requirements. The storage traffic requirements of a group of servers are met through multiple storage area networks based on fibre channel, which has become the standard connection type. Typically, this fibre channel storage area networks are small (maximum of 32 switches/directors in a single fabric) and do not experience any scaling, stability and other performance issues.The advent of I/O consolidation in enterprise data centers for multiple traffic types to converge on to a single fabric or network (typically Ethernet platform) to reduce hardware, energy and management costs has also the potential to allow implementation of large storage area networks based on the fibre channel standards. Large storage area networks are being planned with more than two hundred switches/directors in a single fabric or network in addition to servers and storages connected to the fabric on Ethernet platforms. Even though these large storage area networks are envisioned to operate on Ethernet platform, they still have to satisfy the stringent operating and performance requirement set forth by the fibre channel standards. The two important issues of concern with large storage area networks are scaling and stability. The scaling and stability issues are dependent on the interactions and performance capabilities of various fabric servers located on each switch/director in the fabric in order to provide fabric services. In order to determine the extent of scaling and stability issues of a large fabric first the detailed models of the switch/director addressing the operations of the individual fabric servers are required. Next, the interactions of the switches/directors using the detailed models are to be simulated to study the scaling and stability issues.In this paper, the detailed modeling of the fibre channel switch and the fabric servers using the OMNeT++ discrete event simulator is presented first. Detailed models are developed addressing the behavior of the switch at the level-2 of the fibre channel protocol since this layer addresses the requirements and operations of various mandatory fabric services like fabric build, directory, login, nameserver, management, etc. Next, using the OMNET++ discrete event simulator large fabrics are simulated. The results from the simulation are compared against the test bed traffic and the accuracy is demonstrated. Also, results and analysis of multiple simulations with increasing fabric size are presented

    FAULT-TOLERANT DISTRIBUTED CHANNEL ALLOCATION ALGORITHMS FOR CELLULAR NETWORKS

    Get PDF
    In cellular networks, channels should be allocated efficiently to support communication betweenmobile hosts. In addition, in cellular networks, base stations may fail. Therefore, designing a faulttolerantchannel allocation algorithm is important. That is, the algorithm should tolerate failuresof base stations. Many existing algorithms are neither fault-tolerant nor efficient in allocatingchannels.We propose channel allocation algorithms which are both fault-tolerant and efficient. In theproposed algorithms, to borrow a channel, a base station (or a cell) does not need to get channelusage information from all its interference neighbors. This makes the algorithms fault-tolerant,i.e., the algorithms can tolerate base station failures, and perform well in the presence of thesefailures.Channel pre-allocation has effect on the performance of a channel allocation algorithm. Thiseffect has not been studied quantitatively. We propose an adaptive channel allocation algorithmto study this effect. The algorithm allows a subset of channels to be pre-allocated to cells. Performanceevaluation indicates that a channel allocation algorithm benefits from pre-allocating allchannels to cells.Channel selection strategy also inuences the performance of a channel allocation algorithm.Given a set of channels to borrow, how a cell chooses a channel to borrow is called the channelselection problem. When choosing a channel to borrow, many algorithms proposed in the literaturedo not take into account the interference caused by borrowing the channel to the cells which havethe channel allocated to them. However, such interference should be considered; reducing suchinterference helps increase the reuse of the same channel, and hence improving channel utilization.We propose a channel selection algorithm taking such interference into account.Most channel allocation algorithms proposed in the literature are for traditional cellular networkswith static base stations and the neighborhood relationship among the base stations is fixed.Such algorithms are not applicable for cellular networks with mobile base stations. We proposea channel allocation algorithm for cellular networks with mobile base stations. The proposedalgorithm is both fault-tolerant and reuses channels efficiently.KEYWORDS: distributed channel allocation, resource planning, fault-tolerance, cellular networks,3-cell cluster model

    Isomorphic Strategy for Processor Allocation in k-Ary n-Cube Systems

    Get PDF
    Due to its topological generality and flexibility, the k-ary n-cube architecture has been actively researched for various applications. However, the processor allocation problem has not been adequately addressed for the k-ary n-cube architecture, even though it has been studied extensively for hypercubes and meshes. The earlier k-ary n-cube allocation schemes based on conventional slice partitioning suffer from internal fragmentation of processors. In contrast, algorithms based on job-based partitioning alleviate the fragmentation problem but require higher time complexity. This paper proposes a new allocation scheme based on isomorphic partitioning, where the processor space is partitioned into higher dimensional isomorphic subcubes. The proposed scheme minimizes the fragmentation problem and is general in the sense that any size request can be supported and the host architecture need not be isomorphic. Extensive simulation study reveals that the proposed scheme significantly outperforms earlier schemes in terms of mean response time for practical size k-ary and n-cube architectures. The simulation results also show that reduction of external fragmentation is more substantial than internal fragmentation with the proposed scheme

    Isomorphic Strategy for Processor Allocation in k-Ary n-Cube Systems

    Get PDF
    Due to its topological generality and flexibility, the k-ary n-cube architecture has been actively researched for various applications. However, the processor allocation problem has not been adequately addressed for the k-ary n-cube architecture, even though it has been studied extensively for hypercubes and meshes. The earlier k-ary n-cube allocation schemes based on conventional slice partitioning suffer from internal fragmentation of processors. In contrast, algorithms based on job-based partitioning alleviate the fragmentation problem but require higher time complexity. This paper proposes a new allocation scheme based on isomorphic partitioning, where the processor space is partitioned into higher dimensional isomorphic subcubes. The proposed scheme minimizes the fragmentation problem and is general in the sense that any size request can be supported and the host architecture need not be isomorphic. Extensive simulation study reveals that the proposed scheme significantly outperforms earlier schemes in terms of mean response time for practical size k-ary and n-cube architectures. The simulation results also show that reduction of external fragmentation is more substantial than internal fragmentation with the proposed scheme

    Simulating Primary Manufacturing Area (PMA) Activities of Fixed Trailing Edge Panels Production

    Get PDF
    Simulation clearly has the potential to play an important role in manufacturing decision-making at many levels. This simulation study is conducted at the local manufacturing plant that manufactures fixed trailing edge panels for the aerospace industry. The model focused on operational activities at the primary manufacturing area of cutting and laminating of aircraft’s composite parts. The model built was used to investigate a variety of issues, for example to determine the impact of a proposed change, without affecting production. The result shows that when production rate was increased by 20% to investigate the current plant capacity, the current resources capacity was unable to tolerate this increment. From the model experimentation, an increase of 60 minutes working time for ply cutter machines and 75 minutes of lay up operators found to be the best design to meet the expected production throughput and increase resources utilisation.

    A Unified Approach for Improving QoS and Provider Revenue in 3G Mobile Networks

    Get PDF
    In this paper, we introduce a unified approach for the adaptive control of 3G mobile networks in order to improve both quality of service (QoS) for mobile subscribers and to increase revenue for service providers. The introduced approach constantly monitors QoS measures as packet loss probability and the current number of active mobile users during operation of the network. Based on the values of the QoS measures just observed, the system parameters of the admission controller and packet scheduler are controlled by the adaptive performance management entity. Considering UMTS, we present performance curves showing that handover failure probability is improved by more than one order of magnitude. Moreover, the packet loss probability can be effectively regulated to a predefined level and provider revenue is significantly increased for all pricing policies

    Multi-Dimensional Database Allocation for Parallel Data Warehouses

    Get PDF
    Data allocation is a key performance factor for parallel database systems (PDBS). This holds especially for data warehousing environments where huge amounts of data and complex analytical queries have to be dealt with. While there are several studies on data allocation for relational PDBS, the specific requirements of data warehouses have not yet been sufficiently addressed. In this study, we consider the allocation of relational data warehouses based on a star schema and utilizing bitmap index structures. We investigate how a multi-dimensional hierarchical data fragmentation of the fact table supports queries referencing different subsets of the schema dimensions. Our analysis is based on realistic parameters derived from a decision support benchmark. The performance implications of different allocation choices are evaluated by means of a detailed simulation model

    Comparison of Database Replication Techniques Based on Total Order Broadcast

    Get PDF
    In this paper, we present a performance comparison of database replication techniques based on total order broadcast. While the performance of total order broadcast-based replication techniques has been studied in previous papers, this paper presents many new contributions. First, it compares with each other techniques that were presented and evaluated separately, usually by comparing them to a classical replication scheme like distributed locking. Second, the evaluation is done using a finer network model than previous studies. Third, the paper compares techniques that offer the same consistency criterion (one-copy serializability) in the same environment using the same settings. The paper shows that, while networking performance has little influence in a LAN setting, the cost of synchronizing replicas is quite high. Because of this, total order broadcast-based techniques are very promising as they minimize synchronization between replicas
    corecore