35,866 research outputs found

    Smartphone Power Consumption Characterization and Dynamic Optimization Techniques for OLED Display

    Get PDF
    Smartphones have emerged as the most popular and frequently used platform for the consumption of multimedia. Following the rapid growth of application number and the explosion of cellular network bandwidth, high power consumption, and limited battery capacity remain as the major challenges in smartphone designs. Therefore, lots of research is made to characterize and optimize the smartphone power performance. However, the existing research approaches on smartphone power characterization generally ignore the impact from the components' varying performance in different applications, as well as users' behavior during the practical usage. Hence, the power optimization techniques in the modern smartphone are inflexible to adapt to different application scenarios and user behaviors. In this dissertation, I first proposed a new smartphone power consumption characterization and analysis approach -- ``SEER'', which was associated with both user ethological and smartphone evolutionary perspectives. The real-time power consumption is measured with a set of the most popular applications on different generations of Samsung Galaxy smartphones. And deep analysis is made to find how each smartphone component is utilized in different applications, and how the users' daily usage patterns impact on final energy consumption. The experiments show that some traditional power-hungry components, such as Wi-Fi and CPU, actually consume much less energy in practical daily usage. Meanwhile, OLED display panel is still the biggest power consumer in the whole smartphone system; even it's considered the most promising low power display technology. To further optimize the display power consumption with OLED. I further proposed a set of dynamic power optimization techniques for OLED display, balancing the real-time power performance and the user visual perception experience. In this dissertation, the optimization is full-filled at three different levels: 1) Hardware based Optimization: Based on the traditional AMOLED display pixel driver, a novel DVS-friendly OLED driver design is proposed, which can minimize the display color distortion under aggressive supply voltage scaling. Correlated fine-grained DVS schemes (DiViCi) are also proposed to utilize the DVS-friendly driver into video streaming applications. 2) Software based Optimization: Despite the hardware modification, a dynamic OLED power model is built to evaluate the OLED panel power consumption and human visual perception quality assessment. A novel video category based dynamic tone mapping (DaTuM) technique is proposed for video streaming; 3) User Interaction based Optimization: The user interaction and visual perception during the display content capture phase are also taken into consideration, a novel OLED power friendly video recording application (MORPh) was also proposed. Dedicated real-time management and reliability enhancement schemes are explored to promote the applicability of the proposed approaches . Experiments show that, with these power optimization techniques, the OLED display panel power performance on smartphone device is significantly improved with reasonable visual quality controllability

    A Methodology for Reliable Detection of Anomalous Behavior in Smartphones

    Get PDF
    Smartphones have become the most preferred computing device for both personal and business use. Different applications in smartphones result in different power consumption patterns. The fact that every application has been coded to perform different tasks leads to the claim that every action onboard (whether software or hardware) will consequently have a trace in the power consumption of the smartphone. When the same sequence of steps is repeated on it, it is observed that the power consumption patterns hold some degree of similarity. A device infected with malware can exhibit increased CPU usage, lower speeds, strange behavior such as e-mails or messages being sent automatically and without the user's knowledge; and programs or malware running intermittently or in cycles in the background. This deviation from the expected behavior of the device is termed an anomalous behavior and results in a reduction in the similarity of the power consumption. The anomalous behavior could also be due to gradual degradation of the device or change in the execution environment in addition to the presence of malware. The change in similarity can be used to detect the presence of anomalous behavior on smartphones. This thesis focuses on the detection of anomalous behavior from the power signatures of the smartphone. We have conducted experiments to measure and analyze the power consumption pattern of various smartphone apps. The test bench used for the experiments has a Monsoon Power Meter, which supplies power to the smartphone, and an external laptop collects the power samples from the meter. To emulate the presence of anomalous behavior, we developed an app which runs in the background with varying activity windows. Based on our experiments and analysis, we have developed two separate models for reliable detection of anomalous behavior from power signatures of the smartphone. The first model is based on Independent Component Analysis (ICA) and the second model is based on a Similarity Matrix developed using an array of low pass filters. These models detect the presence of anomalies by comparing the current power consumption pattern of the device under test with that of its normal behavior

    Profiling Power Consumption on Mobile Devices

    Get PDF
    The proliferation of mobile devices, and the migration of the information access paradigm to mobile platforms, motivate studies of power consumption behaviors with the purpose of increasing the device battery life. The aim of this work is to profile the power consumption of a Samsung Galaxy I7500 and a Samsung Nexus S, in order to understand how such feature has evolved over the years. We performed two experiments: the first one measures consumption for a set of usage scenarios, which represent common daily user activities, while the second one analyzes a context-aware application with a known source code. The first experiment shows that the most recent device in terms of OS and hardware components shows significantly lower consumption than the least recent one. The second experiment shows that the impact of different configurations of the same application causes a different power consumption behavior on both smartphones. Our results show that hardware improvements and energy-aware software applications greatly impact the energy efficiency of mobile device

    PowerSpy: Location Tracking using Mobile Device Power Analysis

    Full text link
    Modern mobile platforms like Android enable applications to read aggregate power usage on the phone. This information is considered harmless and reading it requires no user permission or notification. We show that by simply reading the phone's aggregate power consumption over a period of a few minutes an application can learn information about the user's location. Aggregate phone power consumption data is extremely noisy due to the multitude of components and applications that simultaneously consume power. Nevertheless, by using machine learning algorithms we are able to successfully infer the phone's location. We discuss several ways in which this privacy leak can be remedied.Comment: Usenix Security 201

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices
    corecore