814 research outputs found

    On object-based compression for a class of dynamic image-based representations

    Get PDF
    An object-based compression scheme for a class of dynamic image-based representations called "plenoptic videos" (PVs) is studied in this paper. PVs are simplified dynamic light fields in which the videos are taken at regularly spaced locations along a line segment instead of a 2-D plane. To improve the rendering quality in scenes with large depth variations and support the functionalities at the object level for rendering, an object-based compression scheme is employed for the coding of PVs. Besides texture and shape information, the compression of geometry information in the form of depth maps is also supported. The proposed compression scheme exploits both the temporal and spatial redundancy among video object streams in the PV to achieve higher compression efficiency. Experimental results show that considerable improvements in coding performance are obtained for both synthetic and real scenes. Moreover, object-based functionalities such as rendering individual image-based objects are also illustrated. © 2005 IEEE.published_or_final_versio

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    Unconstrained Free-Viewpoint Video Coding

    Get PDF
    In this paper, we present a coding framework addressing image-space compression for free-viewpoint video. Our framework is based on time-varying 3D point samples which represent real-world objects. The 3D point samples are obtained after a geometrical reconstruction from multiple pre-recorded video sequences and thus allow for arbitrary viewpoints during playback. The encoding of the data is performed as an off-line process and is not time-critical. The decoding however, must support for real-time rendering of the dynamic 3D data. We introduce a compression framework which encodes multiple point attributes like depth and color into progressive streams. The reference data structure is aligned on the original camera input images and thus enables for easy view-dependent decoding. A novel differential coding approach permits random access in constant time throughout the entire data set and thus enables arbitrary viewpoint trajectories in both time and space.Engineering and Applied Science

    Video Quality Metrics

    Get PDF

    Performance analysis of MPEG-4 decoder and encoder

    Full text link
    © 2002 Croatian Soc. Electronics in Marine-ELMAR. A performance analysis of MPEG-4 encoder and decoder programs on a standard personal computer is presented. The paper first describes the MPEG-4 computational load and discusses related works, then outlines the performance analysis. Experimental results show that while the decoder program can be easily executed in real time, the encoder requires execution times in the order of seconds per frame which call for substantial optimisation to satisfy real-time constraints
    corecore