337,248 research outputs found

    Electronic prototyping

    Get PDF
    The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. Toward this, we introduce a theory of timed actors whose notion of refinement is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting sets of behaviors. Our refinement allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We show how our theory relates to, and can be used to reconcile existing time and performance models and their established theories

    Model-based development of energy-efficient automation systems

    Get PDF
    Der Energieverbrauch ist ein immer wichtigeres Entscheidungskriterium, das bei der Suche nach guten architektonischen und gestalterischen Alternativen technischer Systeme einbezogen werden muss. Diese Monographie stellt eine Methodik für das modellbasierte Engineering energieeffizienter Automatisierungssysteme vor. In dieser Monografie wird ein eingebettetes System als eine Kombination der Prozessorhardware und des Softwareteils betrachtet. Im entwickelten Verfahren wird der erste Teil durch ein Betriebsmodell (operational model) beschrieben, das alle möglichen Zustände und Übergänge des betrachteten Systems darstellt. Der letzte Teil wird durch ein Anwendungsmodell (application model) repräsentiert, das den Arbeitsablauf eines konkreten für dieses System erstellten Programms widerspiegelt. Gemeinsam werden die beiden Modelle in ein stochastisches Petri-Netz umgewandelt, um eine Analyse des Systems zu ermöglichen. Die entwickelten Transformationsregeln werden vorgestellt und mathematisch beschrieben. Es ist dann möglich, die Leistungsaufnahme des Systems mittels einer Standardauswertung von Petri-Netzen vorherzusagen. Die UML (vereinheitlichte Modellierungssprache) wird in dieser Monographie für die Modellierung der Echtzeitsysteme verwendet. Die mit dem MARTE-Profil (Modellierung und Analyse der Echtzeit- und eingebetteten Systeme) erweiterten Zustandsübergangsdiagramme sind für die Modellierung und Leistungsbewertung ausgewählt. Die vorgestellte Methodik wird durch eine Implementierung der notwendigen Algorithmen und grafischen Editoren in der integrierten Entwicklungsumgebung TimeNET unterstützt. Die entwickelte Erweiterung implementiert die vorgestellte Methode zur Modellierung und Bewertung des Energieverbrauchs basierend auf den erweiterten UML-Modellen, die nun automatisch in ein stochastisches Petri-Netz transformiert werden können. Der Energieverbrauch des Systems kann dann durch die Analyse-Module für stochastische Petri-Netze von TimeNET vorhergesagt werden. Die Vorteile der vorgeschlagenen Methode werden anhand von Anwendungsbeispielen demonstriert.Power consumption is an increasingly important decision criterion that has to be included in the search for good architectural and design alternatives of technical systems. This monograph presents a methodology for the model-based engineering of energy-aware automation systems. In this monograph, an embedded system is considered as an alliance of the processor hardware and the software part. In the developed method, the former part is described by an operational model, which depicts all possible states and transitions of the system under consideration. The latter part is represented by an application model, which reflects the workflow of a concrete program created for this system. Together, these two models are translated into one stochastic Petri net to make analyzing of the system possible. The developed transformation rules are presented and described mathematically. It is then possible to predict the system’s power consumption by a standard evaluation of Petri nets. The Unified Modeling Language (UML) is used in this monograph for modeling of real-time systems. State machine diagrams extended with the MARTE profile (Modeling and Analysis of Real-Time and Embedded Systems) are chosen for modeling and performance evaluation. The presented methodology is supported by an implementation of the necessary algorithms and graphical editors in the software tool TimeNET. The developed extension implements the presented method for power consumption modeling and evaluation based on the extended UML models, which now can be automatically transformed into a stochastic Petri net. The system’s power consumption can be then predicted by the standard Petri net analysis modules of TimeNET. The methodology is validated and its advantages are demonstrated using application examples

    A Component-Based Power System Model-Driven Architecture

    Full text link
    This letter describes an approach of applying the model-driven development in power systems. A component-based model-driven architecture,that gives full flexibility of the automation in source code generation,is introduced. A design pattern to code generation is described

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    The earlier the better: a theory of timed actor interfaces

    Get PDF
    Programming embedded and cyber-physical systems requires attention not only to functional behavior and correctness, but also to non-functional aspects and specifically timing and performance constraints. A structured, compositional, model-based approach based on stepwise refinement and abstraction techniques can support the development process, increase its quality and reduce development time through automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle of worst-case design that permeates the world of performance-critical systems. This is in contrast with the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors. An important feature of our refinement is that it allows time-deterministic abstractions to be made of time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We also show how our theory relates to, and can be used to reconcile a number of existing time and performance models and how their established theories can be exploited to represent and analyze interface specifications and refinement steps.\u

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    A knowledge based software engineering environment testbed

    Get PDF
    The Carnegie Group Incorporated and Boeing Computer Services Company are developing a testbed which will provide a framework for integrating conventional software engineering tools with Artifical Intelligence (AI) tools to promote automation and productivity. The emphasis is on the transfer of AI technology to the software development process. Experiments relate to AI issues such as scaling up, inference, and knowledge representation. In its first year, the project has created a model of software development by representing software activities; developed a module representation formalism to specify the behavior and structure of software objects; integrated the model with the formalism to identify shared representation and inheritance mechanisms; demonstrated object programming by writing procedures and applying them to software objects; used data-directed and goal-directed reasoning to, respectively, infer the cause of bugs and evaluate the appropriateness of a configuration; and demonstrated knowledge-based graphics. Future plans include introduction of knowledge-based systems for rapid prototyping or rescheduling; natural language interfaces; blackboard architecture; and distributed processin

    Space station advanced automation

    Get PDF
    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software
    corecore