1,278 research outputs found

    Decision support for blood glucose control in critically ill patients:development and clinical pilot testing of the Glucosafe system

    Get PDF

    Clinical decision support systems in the care of hospitalised patients with diabetes

    Get PDF
    This thesis explored the role of health informatics (decision support systems) in caring for hospitalised patients with diabetes through a systematic review and by analysing data from University Hospital Birmingham, UK. Findings from the thesis: 1) highlight the potential role of computerised physician order entry system in improving guideline based anti-diabetic medication prescription in particular insulin prescription, and their effectiveness in contributing to better glycaemic control; 2) quantify the occurrence of missed discharge diagnostic codes for diabetes using electronic prescription data and suggests 60% of this could be potentially reduced using an algorithm that could be introduced as part of the information system; 3) found that hypoglycaemia and foot disease in hospitalised diabetes patients were independently associated with higher in-hospital mortality rates and longer length of stay; 4) quantify the hypoglycaemia rates in non-diabetic patients and proposes one method of establishing a surveillance system to identify non diabetic hypoglycaemic patients; and 5) introduces a prediction model that may be useful to identify patients with diabetes at risk of poor clinical outcomes during their hospital stay

    Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care

    Get PDF
    Hyperglycaemia is prevalent in critical illness and increases the risk of further complications and mortality, while tight control can reduce mortality up to 43%. Adaptive control methods are capable of highly accurate, targeted blood glucose regulation using limited numbers of manual measurements due to patient discomfort and labour intensity. Therefore, the option to obtain greater data density using emerging continuous glucose sensing devices is attractive. However, the few such systems currently available can have errors in excess of 20-30%. In contrast, typical bedside testing kits have errors of approximately 7-10%. Despite greater measurement frequency larger errors significantly impact the resulting glucose and patient specific parameter estimates, and thus the control actions determined creating an important safety and performance issue. This paper models the impact of the Continuous Glucose Monitoring System (CGMS, Medtronic, Northridge, CA) on model-based parameter identification and glucose prediction. An integral-based fitting and filtering method is developed to reduce the effect of these errors. A noise model is developed based on CGMS data reported in the literature, and is slightly conservative with a mean Clarke Error Grid (CEG) correlation of R=0.81 (range: 0.68-0.88) as compared to a reported value of R=0.82 in a critical care study. Using 17 virtual patient profiles developed from retrospective clinical data, this noise model was used to test the methods developed. Monte-Carlo simulation for each patient resulted in an average absolute one-hour glucose prediction error of 6.20% (range: 4.97-8.06%) with an average standard deviation per patient of 5.22% (range: 3.26-8.55%). Note that all the methods and results are generalisable to similar applications outside of critical care, such as less acute wards and eventually ambulatory individuals. Clinically, the results show one possible computational method for managing the larger errors encountered in emerging continuous blood glucose sensors, thus enabling their more effective use in clinical glucose regulation studies

    Glucose controle in critically ill children

    Get PDF

    Risk and Reward: Extending stochastic glycaemic control intervals to reduce workload

    Full text link
    peer reviewedBackground STAR is a model-based, personalised, risk-based dosing approach for glycaemic control (GC) in critically ill patients. STAR provides safe, effective control to nearly all patients, using 1-3 hourly measurement and intervention intervals. However, the average 11-12 measurements per day required can be a clinical burden in many intensive care units. This study aims to significantly reduce workload by extending STAR 1-3 hourly intervals to 1 to 4-, 5-, and 6- hourly intervals, and evaluate the impact of these longer intervals on GC safety and efficacy, using validated in silico virtual patients and trials methods. A Standard STAR approach was used which allowed more hyperglycaemia over extended intervals, and a STAR Upper Limit Controlled approach limited nutrition to mitigate hyperglycaemia over longer intervention intervals. Results Extending STAR from 1-3 hourly to 1-6 hourly provided high safety and efficacy for nearly all patients in both approaches. For STAR Standard, virtual trial results showed lower % blood glucose (BG) in the safe 4.4-8.0 mmol/L target band (from 83% to 80%) as treatment intervals increased. Longer intervals resulted in increased risks of hyper- (15% to 18% BG > 8.0 mmol/L) and hypo- (2.1% to 2.8% of patients with min. BG < 2.2 mmol/L) glycaemia. These results were achieved with slightly reduced insulin (3.2 [2.0 5.0] to 2.5 [1.5 3.0] U/h) and nutrition (100 [85 100] to 90 [75 100] % goal feed) rates, but most importantly, with significantly reduced workload (12 to 8 measurements per day). The STAR Upper Limit Controlled approach mitigated hyperglycaemia and had lower insulin and significantly lower nutrition administration rates. Conclusions The modest increased risk of hyper- and hypo- glycaemia, and the reduction in nutrition delivery associated with longer treatment intervals represent a significant risk and reward trade-off in GC. However, STAR still provided highly safe, effective control for nearly all patients regardless of treatment intervals and approach, showing this unique risk-based dosing approach, modulating both insulin and nutrition, to be robust in its design. Clinical pilot trials using STAR with different measurement timeframes should be undertaken to confirm these results clinically
    • …
    corecore