9,753 research outputs found

    Model Theoretic Complexity of Automatic Structures

    Get PDF
    We study the complexity of automatic structures via well-established concepts from both logic and model theory, including ordinal heights (of well-founded relations), Scott ranks of structures, and Cantor-Bendixson ranks (of trees). We prove the following results: 1) The ordinal height of any automatic well- founded partial order is bounded by \omega^\omega ; 2) The ordinal heights of automatic well-founded relations are unbounded below the first non-computable ordinal; 3) For any computable ordinal there is an automatic structure of Scott rank at least that ordinal. Moreover, there are automatic structures of Scott rank the first non-computable ordinal and its successor; 4) For any computable ordinal, there is an automatic successor tree of Cantor-Bendixson rank that ordinal.Comment: 23 pages. Extended abstract appeared in Proceedings of TAMC '08, LNCS 4978 pp 514-52

    Dynamics over Signed Networks

    Full text link
    A signed network is a network with each link associated with a positive or negative sign. Models for nodes interacting over such signed networks, where two different types of interactions take place along the positive and negative links, respectively, arise from various biological, social, political, and economic systems. As modifications to the conventional DeGroot dynamics for positive links, two basic types of negative interactions along negative links, namely the opposing rule and the repelling rule, have been proposed and studied in the literature. This paper reviews a few fundamental convergence results for such dynamics over deterministic or random signed networks under a unified algebraic-graphical method. We show that a systematic tool of studying node state evolution over signed networks can be obtained utilizing generalized Perron-Frobenius theory, graph theory, and elementary algebraic recursions.Comment: In press, SIAM Revie

    Modal mu-calculi

    Get PDF
    corecore