126,797 research outputs found

    An Administrative View of Model Uncertainty in Public Health

    Get PDF
    Dr. Carrington reviews several ways to deal with model uncertainty, including those failing to acknowledge any use of models. He then evaluates six such methods with regard to, e.g., transparency and cost of execution

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Probabilistic Default Reasoning with Conditional Constraints

    Full text link
    We propose a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. In detail, we generalize the notions of Pearl's entailment in system Z, Lehmann's lexicographic entailment, and Geffner's conditional entailment to conditional constraints. We give some examples that show that the new notions of z-, lexicographic, and conditional entailment have similar properties like their classical counterparts. Moreover, we show that the new notions of z-, lexicographic, and conditional entailment are proper generalizations of both their classical counterparts and the classical notion of logical entailment for conditional constraints.Comment: 8 pages; to appear in Proceedings of the Eighth International Workshop on Nonmonotonic Reasoning, Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, Breckenridge, Colorado, USA, 9-11 April 200

    Economic psychology, sustainability and climate change.

    Get PDF

    Polytropic dark halos of elliptical galaxies

    Full text link
    The kinematics of stars and planetary nebulae in early type galaxies provide vital clues to the enigmatic physics of their dark matter halos. We fit published data for fourteen such galaxies using a spherical, self-gravitating model with two components: (1) a Sersic stellar profile fixed according to photometric parameters, and (2) a polytropic dark matter halo that conforms consistently to the shared gravitational potential. The polytropic equation of state can describe extended theories of dark matter involving self-interaction, non-extensive thermostatistics, or boson condensation (in a classical limit). In such models, the flat-cored mass profiles widely observed in disc galaxies are due to innate dark physics, regardless of any baryonic agitation. One of the natural parameters of this scenario is the number of effective thermal degrees of freedom of dark matter (F_d) which is proportional to the dark heat capacity. By default we assume a cosmic ratio of baryonic and dark mass. Non-Sersic kinematic ideosyncrasies and possible non-sphericity thwart fitting in some cases. In all fourteen galaxies the fit with a polytropic dark halo improves or at least gives similar fits to the velocity dispersion profile, compared to a stars-only model. The good halo fits usually prefer F_d values from six to eight. This range complements the recently inferred limit of 7<F_d<10 (Saxton & Wu), derived from constraints on galaxy cluster core radii and black hole masses. However a degeneracy remains: radial orbital anisotropy or a depleted dark mass fraction could shift our models' preference towards lower F_d; whereas a loss of baryons would favour higher F_d.Comment: 17 pages, 10 figures, 2 tables. MNRAS accepte

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure
    • …
    corecore