3,881 research outputs found

    Depth of anesthesia control using internal model control techniques

    Get PDF
    The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the pharmacokinetics (PK), and pharmacodynamics (PD). These uncertainties may affect the stability of the closed loop control system. This paper aims at developing predictive controllers using Internal Model Control technique. This study develops patient dose-response models and to provide an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated compared with traditional PID controller and the performance is confirmed in our simulation

    Control and Automation

    Get PDF
    Control and automation systems are at the heart of our every day lives. This book is a collection of novel ideas and findings in these fields, published as part of the Special Issue on Control and Automation. The core focus of this issue was original ideas and potential contributions for both theory and practice. It received a total number of 21 submissions, out of which 7 were accepted. These published manuscripts tackle some novel approaches in control, including fractional order control systems, with applications in robotics, biomedical engineering, electrical engineering, vibratory systems, and wastewater treatment plants. This Special Issue has gathered a selection of novel research results regarding control systems in several distinct research areas. We hope that these papers will evoke new ideas, concepts, and further developments in the field

    Non-integer IMC based PID Design for Load Frequency Control of Power System Through Reduced Model Order

    Get PDF
    This paper deals with non-integer internal model control (FIMC) based proportional-integral-derivative(PID) design for load frequency control (LFC) of single area non-reheated thermal power system under parameter divergence and random load disturbance. Firstly, a fractional second order plus dead time(SOPDT) reduced system model is obtained using genetic algorithm through step error minimization. Secondly, a FIMC based PID controller is designed for single area power system based on reduced system model. Proposed controller is equipped with single area non-reheated thermal power system. The resulting controller is tested using MATLAB/SIMULINK under various conditions. The simulation results show that the controller can accommodate system parameter uncertainty and load disturbance. Further, simulation shows that it maintains robust performance as well as minimizes the effect of load fluctuations on frequency deviation. Finally, the proposed method applied to two area power system to show the effectiveness

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Closed-loop elastic demand control under dynamic pricing program in smart microgrid using super twisting sliding mode controller

    Get PDF
    Electricity demand is rising due to industrialisation, population growth and economic development. To meet this rising electricity demand, towns are renovated by smart cities, where the internet of things enabled devices, communication technologies, dynamic pricing servers and renewable energy sources are integrated. Internet of things (IoT) refers to scenarios where network connectivity and computing capability is extended to objects, sensors and other items not normally considered computers. IoT allows these devices to generate, exchange and consume data without or with minimum human intervention. This integrated environment of smart cities maintains a balance between demand and supply. In this work, we proposed a closed-loop super twisting sliding mode controller (STSMC) to handle the uncertain and fluctuating load to maintain the balance between demand and supply persistently. Demand-side load management (DSLM) consists of agents-based demand response (DR) programs that are designed to control, change and shift the load usage pattern according to the price of the energy of a smart grid community. In smart grids, evolved DR programs are implemented which facilitate controlling of consumer demand by effective regulation services. The DSLM under price-based DR programs perform load shifting, peak clipping and valley filling to maintain the balance between demand and supply. We demonstrate a theoretical control approach for persistent demand control by dynamic price-based closed-loop STSMC. A renewable energy integrated microgrid scenario is discussed numerically to show that the demand of consumers can be controlled through STSMC, which regulates the electricity price to the DSLM agents of the smart grid community. The overall demand elasticity of the current study is represented by a first-order dynamic price generation model having a piece-wise linear price-based DR program. The simulation environment for this whole scenario is developed in MATLAB/Simulink. The simulations validate that the closed-loop price-based elastic demand control technique can trace down the generation of a renewable energy integrated microgrid

    Observer-based offset-free internal model control

    Get PDF
    A linear feedback control structure is proposed that allows internal model control design principles to be applied to unstable and marginally stable plants. The control structure comprises an observer using an augmented plant model, state estimate feedback and disturbance estimate feedback. Conditions are given for both nominal internal stability and offset-free action even in the case of plant-model mismatch. The Youla parameterization is recovered as a limiting case with reduced order observers. The simple design methodology is illustrated for a marginally stable plant with delay

    Peripheral control tools for a run-of-mine ore milling circuit

    Get PDF
    Run-of-mine ore milling circuits are generally difficult to control owing to the presence of strong external disturbances, poor process models and the unavailability of important process variable measurements. These shortcomings are common for processes in the mineral-processing industry. For processes that fall into this class, the peripheral control tools in the control loop are considered to be as important as the controller itself. This work addresses the implementation of peripheral control tools on a run-of-mine ore milling circuit to help overcome the deteriorated control performance resulting from the aforementioned shortcomings. The effects of strong external disturbances are suppressed through the application of a disturbance observer. A fractional order disturbance observer is also implemented and a novel Bode ideal cutoff disturbance observer is introduced. The issue of poor process models is addressed through the detection of significant mismatch between the actual plant and the available model from process data. A closed-form expression is given for the case where the controller has a transfer function. If the controller does not have a transfer function, a partial correlation analysis is used to detect the transfer function elements in the model transfer function matrix that contain significant mismatch. The mill states and important mill parameters are estimated with the use of particle filters. Simultaneous state and parameter estimation is compared with a novel dual particle filtering scheme. A sensitivity analysis shows the class of systems for which dual estimation would provide superiorestimation accuracy over simultaneous estimation. The implemented peripheral control tools show promise for current milling circuits where proportional-integral-derivative (PID) control is prevalent, and also for advanced control strategies, such as model predictive control, which are expected to become more common in the future. AFRIKAANS : Maalkringe wat onbehandelde erts maal is oor die algemeen moeilik om te beheer as gevolg van die teenwoordigheid van sterk eksterne steurings, onakkurate aanlegmodelle en metings van belangrike prosesveranderlikes wat ontbreek. Hierdie probleme is algemeen vir aanlegte in die mineraalprosesseringsbedryf. Vir aanlegte in hierdie klas word die randbeheerinstrumente as net so belangrik as die beheerder beskou. Hierdie verhandeling beskryf die implementering van randbeheerinstrumente vir ’n maalkring wat onbehandelde erts maal, om die verswakte beheerverrigting teen te werk wat veroorsaak word deur bogenoemde probleme. Die impak van sterk eksterne steurings word teengewerk deur die implementering van ’n steuringsafskatter. ’n Breuk-orde-steuringsafskatter is ook geïmplementeer en ’n nuwe Bode ideale afsnysteuringsafskatter word voorgestel. Die kwessie van onakkurate aanlegmodelle word hanteer deur van die aanlegdata af vas te stel of daar ’n verskil is tussen die aanleg en die beskikbare model van die aanleg. ’n Uitdrukking word gegee vir hierdie verskil vir die geval waar die beheerder met ’n oordragsfunksie voorgestel kan word. Indien die beheerder nie ’n oordragsfunksie het nie, word van ‘n parsiële korrelasie-analise gebruik gemaak om die element, of elemente, in die aanleg se oordragsfunksiematriks te identifiseer wat van die werklike aanleg verskil. Die toestande en belangrike parameters in die meul word beraam deur van partikel-filters gebruikte maak. Gelyktydige toestand- en parameter-beraming word vergelyk met ’n nuwe dubbel-partikelfilter skema. ’n Sensitiwiteitsanalise wys die klas van stelsels waarvoor dubbel-afskatting meer akkurate waardes sal gee as gelyktydige afskatting. Die voorgestelde randbeheerinstrumente is toepaslik vir huidige maalkringe waar PID-beheer algemeen is, asook vir gevorderde beheerstrategieë, soos model-voorspellende beheer, wat na verwagting in die toekoms meer algemeen sal word. CopyrightDissertation (MEng)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    LCCC Workshop on Process Control

    Get PDF
    • …
    corecore