6,576 research outputs found

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Tuning Windowed Chi-Squared Detectors for Sensor Attacks

    Full text link
    A model-based windowed chi-squared procedure is proposed for identifying falsified sensor measurements. We employ the widely-used static chi-squared and the dynamic cumulative sum (CUSUM) fault/attack detection procedures as benchmarks to compare the performance of the windowed chi-squared detector. In particular, we characterize the state degradation that a class of attacks can induce to the system while enforcing that the detectors do not raise alarms (zero-alarm attacks). We quantify the advantage of using dynamic detectors (windowed chi-squared and CUSUM detectors), which leverages the history of the state, over a static detector (chi-squared) which uses a single measurement at a time. Simulations using a chemical reactor are presented to illustrate the performance of our tools
    • …
    corecore