840 research outputs found

    Model-Checking Problems as a Basis for Parameterized Intractability

    Full text link
    Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update

    On the Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    One of Courcelle's celebrated results states that if C is a class of graphs of bounded tree-width, then model-checking for monadic second order logic (MSO_2) is fixed-parameter tractable (fpt) on C by linear time parameterized algorithms, where the parameter is the tree-width plus the size of the formula. An immediate question is whether this is best possible or whether the result can be extended to classes of unbounded tree-width. In this paper we show that in terms of tree-width, the theorem cannot be extended much further. More specifically, we show that if C is a class of graphs which is closed under colourings and satisfies certain constructibility conditions and is such that the tree-width of C is not bounded by \log^{84} n then MSO_2-model checking is not fpt unless SAT can be solved in sub-exponential time. If the tree-width of C is not poly-logarithmically bounded, then MSO_2-model checking is not fpt unless all problems in the polynomial-time hierarchy can be solved in sub-exponential time

    A parametric analysis of the state-explosion problem in model checking

    Get PDF
    AbstractIn model checking, the state-explosion problem occurs when one checks a nonflat system, i.e., a system implicitly described as a synchronized product of elementary subsystems. In this paper, we investigate the complexity of a wide variety of model-checking problems for nonflat systems under the light of parameterized complexity, taking the number of synchronized components as a parameter. We provide precise complexity measures (in the parameterized sense) for most of the problems we investigate, and evidence that the results are robust

    Hard Problems on Random Graphs

    Get PDF
    Many graph properties are expressible in first order logic. Whether a graph contains a clique or a dominating set of size k are two examples. For the solution size as its parameter the first one is W[1]-complete and the second one W[2]-complete meaning that both of them are hard problems in the worst-case. If we look at both problem from the aspect of average-case complexity, the picture changes. Clique can be solved in expected FPT time on uniformly distributed graphs of size n, while this is not clear for Dominating Set. We show that it is indeed unlikely that Dominating Set can be solved efficiently on random graphs: If yes, then every first-order expressible graph property can be solved in expected FPT time, too. Furthermore, this remains true when we consider random graphs with an arbitrary constant edge probability. We identify a very simple problem on random matrices that is equally hard to solve on average: Given a square boolean matrix, are there k rows whose logical AND is the zero vector? The related Even Set problem on the other hand turns out to be efficiently solvable on random instances, while it is known to be hard in the worst-case

    Counting Subgraphs in Somewhere Dense Graphs

    Get PDF
    We study the problems of counting copies and induced copies of a small pattern graph H in a large host graph G. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns H. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time f(H)?|G|^O(1) for some computable function f. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes ? as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: - Counting k-matchings in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. - Counting k-independent sets in a graph G ? ? is fixed-parameter tractable if and only if ? is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if ? is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting k-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in F-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting k-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19). At the same time our proofs are much simpler: using structural characterisations of somewhere dense graphs, we show that a colourful version of a recent breakthrough technique for analysing pattern counting problems (Curticapean, Dell, Marx; STOC 17) applies to any subgraph-closed somewhere dense class of graphs, yielding a unified view of our current understanding of the complexity of subgraph counting

    From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

    Get PDF
    In this work we establish and investigate connections between causes for query answers in databases, database repairs wrt. denial constraints, and consistency-based diagnosis. The first two are relatively new research areas in databases, and the third one is an established subject in knowledge representation. We show how to obtain database repairs from causes, and the other way around. Causality problems are formulated as diagnosis problems, and the diagnoses provide causes and their responsibilities. The vast body of research on database repairs can be applied to the newer problems of computing actual causes for query answers and their responsibilities. These connections, which are interesting per se, allow us, after a transition -inspired by consistency-based diagnosis- to computational problems on hitting sets and vertex covers in hypergraphs, to obtain several new algorithmic and complexity results for database causality.Comment: To appear in Theory of Computing Systems. By invitation to special issue with extended papers from ICDT 2015 (paper arXiv:1412.4311

    Tractability and the computational mind

    Get PDF
    • …
    corecore