1,975 research outputs found

    Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions

    Get PDF
    Convolutional Neural Networks (CNN) have demonstrated their capabilities on the agronomical field, especially for plant visual symptoms assessment. As these models grow both in the number of training images and in the number of supported crops and diseases, there exist the dichotomy of (1) generating smaller models for specific crop or, (2) to generate a unique multi-crop model in a much more complex task (especially at early disease stages) but with the benefit of the entire multiple crop image dataset variability to enrich image feature description learning. In this work we first introduce a challenging dataset of more than one hundred-thousand images taken by cell phone in real field wild conditions. This dataset contains almost equally distributed disease stages of seventeen diseases and five crops (wheat, barley, corn, rice and rape-seed) where several diseases can be present on the same picture. When applying existing state of the art deep neural network methods to validate the two hypothesised approaches, we obtained a balanced accuracy (BAC=0.92) when generating the smaller crop specific models and a balanced accuracy (BAC=0.93) when generating a single multi-crop model. In this work, we propose three different CNN architectures that incorporate contextual non-image meta-data such as crop information onto an image based Convolutional Neural Network. This combines the advantages of simultaneously learning from the entire multi-crop dataset while reducing the complexity of the disease classification tasks. The crop-conditional plant disease classification network that incorporates the contextual information by concatenation at the embedding vector level obtains a balanced accuracy of 0.98 improving all previous methods and removing 71% of the miss-classifications of the former methods

    Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets

    Get PDF
    Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies, they require large and manually annotated image datasets that is not always accessible, specially for rare and new diseases. This study focuses on the development of a plant disease detection algorithm and strategy requiring few plant images (Few-shot learning algorithm). We extend previous work by using a novel challenging dataset containing more than 100,000 images. This dataset includes images of leaves, panicles and stems of five different crops (barley, corn, rape seed, rice, and wheat) for a total of 17 different diseases, where each disease is shown at different disease stages. In this study, we propose a deep metric learning based method to extract latent space representations from plant diseases with just few images by means of a Siamese network and triplet loss function. This enhances previous methods that require a support dataset containing a high number of annotated images to perform metric learning and few-shot classification. The proposed method was compared over a traditional network that was trained with the cross-entropy loss function. Exhaustive experiments have been performed for validating and measuring the benefits of metric learning techniques over classical methods. Results show that the features extracted by the metric learning based approach present better discriminative and clustering properties. Davis-Bouldin index and Silhouette score values have shown that triplet loss network improves the clustering properties with respect to the categorical-cross entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and Silhouette score value by 166.7% compared to the categorical cross-entropy loss model. Moreover, the F-score parameter obtained from the Siamese network with the triplet loss performs better than classical approaches when there are few images for training, obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet loss have improved the ability to learn different plant diseases using few images of each class. These networks based on metric learning techniques improve clustering and classification results over traditional categorical cross-entropy loss networks for plant disease identification.This project was partially supported by the Spanish Government through CDTI Centro para el Desarrollo Tecnológico e Industrial project AI4ES (ref CER-20211030), by the University of the Basque Country (UPV/EHU) under grant COLAB20/01 and by the Basque Government through grant IT1229-19

    Crop leaf disease detection and classification using machine learning and deep learning algorithms by visual symptoms: a review

    Get PDF
    A Quick and precise crop leaf disease detection is important to increasing agricultural yield in a sustainable manner. We present a comprehensive overview of recent research in the field of crop leaf disease prediction using image processing (IP), machine learning (ML) and deep learning (DL) techniques in this paper. Using these techniques, crop leaf disease prediction made it possible to get notable accuracies. This article presents a survey of research papers that presented the various methodologies, analyzes them in terms of the dataset, number of images, number of classes, algorithms used, convolutional neural networks (CNN) models employed, and overall performance achieved. Then, suggestions are prepared on the most appropriate algorithms to deploy in standard, mobile/embedded systems, Drones, Robots and unmanned aerial vehicles (UAV). We discussed the performance measures used and listed some of the limitations and future works that requires to be focus on, to extend real time automated crop leaf disease detection system

    Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets

    Get PDF
    [EN] Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies, they require large and manually annotated image datasets that is not always accessible, specially for rare and new diseases. This study focuses on the development of a plant disease detection algorithm and strategy requiring few plant images (Few-shot learning algorithm). We extend previous work by using a novel challenging dataset containing more than 100,000 images. This dataset includes images of leaves, panicles and stems of five different crops (barley, corn, rape seed, rice, and wheat) for a total of 17 different diseases, where each disease is shown at different disease stages. In this study, we propose a deep metric learning based method to extract latent space representations from plant diseases with just few images by means of a Siamese network and triplet loss function. This enhances previous methods that require a support dataset containing a high number of annotated images to perform metric learning and few-shot classification. The proposed method was compared over a traditional network that was trained with the cross-entropy loss function. Exhaustive experiments have been performed for validating and measuring the benefits of metric learning techniques over classical methods. Results show that the features extracted by the metric learning based approach present better discriminative and clustering properties. Davis-Bouldin index and Silhouette score values have shown that triplet loss network improves the clustering properties with respect to the categorical-cross entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and Silhouette score value by 166.7% compared to the categorical cross-entropy loss model. Moreover, the F-score parameter obtained from the Siamese network with the triplet loss performs better than classical approaches when there are few images for training, obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet loss have improved the ability to learn different plant diseases using few images of each class. These networks based on metric learning techniques improve clustering and classification results over traditional categorical cross-entropy loss networks for plant disease identification.This project was partially supported by the Spanish Government through CDTI Centro para el Desarrollo Tecnológico e Industrial project AI4ES (ref CER-20211030), by the University of the Basque Country (UPV/EHU) under grant COLAB20/01 and by the Basque Government through grant IT1229-19

    ANN for Lung Cancer Detection

    Get PDF
    In this paper, we developed an Artificial Neural Network (ANN) for detect the absence or presence of lung cancer in human body. Symptoms were used to diagnose the lung cancer, these symptoms such as Yellow fingers, Anxiety, Chronic Disease, Fatigue, Allergy, Wheezing, Coughing, Shortness of Breath, Swallowing Difficulty and Chest pain. They were used and other information about the person as input variables for our ANN. Our ANN established, trained, and validated using data set, which its title is “survey lung cancer”. Model evaluation showed that the ANN model is able to detect the absence or presence of lung cancer with 96.67 % accuracy

    Monitoring tomato leaf disease through convolutional neural networks

    Get PDF
    Agriculture plays an essential role in Mexico’s economy. The agricultural sector has a 2.5% share of Mexico’s gross domestic product. Specifically, tomatoes have become the country’s most exported agricultural product. That is why there is an increasing need to improve crop yields. One of the elements that can considerably affect crop productivity is diseases caused by agents such as bacteria, fungi, and viruses. However, the process of disease identification can be costly and, in many cases, time-consuming. Deep learning techniques have begun to be applied in the process of plant disease identification with promising results. In this paper, we propose a model based on convolutional neural networks to identify and classify tomato leaf diseases using a public dataset and complementing it with other photographs taken in the fields of the country. To avoid overfitting, generative adversarial networks were used to generate samples with the same characteristics as the training data. The results show that the proposed model achieves a high performance in the process of detection and classification of diseases in tomato leaves: the accuracy achieved is greater than 99% in both the training dataset and the test dataset.This work was partially funded by the State Research Agency of Spain under grant number PID2020-116377RB-C21.Peer ReviewedPostprint (published version

    Techniques of deep learning and image processing in plant leaf disease detection: a review

    Get PDF
    Computer vision techniques are an emerging trend today. Digital image processing is gaining popularity because of the significant upsurge in the usage of digital images over the internet. Digital image processing is a practice that can help in designing sophisticated high-end machines, which can hold the ophthalmic functionality of the human eye. In agriculture, leaf examination is important for disease identification and fair warning for any deficiency within the plant. Many prominent plant species are facing extinction because of a lack of knowledge. A proper realization of computer vision techniques aid in extracting a significant amount of information from leaf image. This necessitates the requirement of an automatic leaf disease detection method to diagnose disease occurrences and severity, for timely crop management, by spraying pesticides. This study focuses on techniques of digital image processing and machine learning rendered in plant leaf disease detection, which has great potential in precision agriculture. To support this study, techniques exercised by various researchers in recent years are tabulated

    ANN for Diagnosing Hepatitis Virus

    Get PDF
    Abstract: This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. A number of factors that may possibly influence the performance of patients were outlined. Such factors as age, sex, Steroid, Antivirals, Fatigue, Malaise, Anorexia, Liver Big, Liver Firm Splean Palpable, Spiders, Ascites, Varices, Bilirubin, Alk Phosphate, SGOT, Albumin, Protine and Histology, were then used as input variables for the ANN model . Test data evaluation shows that the ANN model is able to correctly predict the diagnosis of more than 93% of prospective Patients

    Lung Cancer Detection Using Artificial Neural Network

    Get PDF
    In this paper, we developed an Artificial Neural Network (ANN) for detect the absence or presence of lung cancer in human body. Symptoms were used to diagnose the lung cancer, these symptoms such as Yellow fingers, Anxiety, Chronic Disease, Fatigue, Allergy, Wheezing, Coughing, Shortness of Breath, Swallowing Difficulty and Chest pain. They were used and other information about the person as input variables for our ANN. Our ANN established, trained, and validated using data set, which its title is “survey lung cancer”. Model evaluation showed that the ANN model is able to detect the absence or presence of lung cancer with 96.67 % accuracy
    corecore