5,506 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair

    Get PDF
    At ICSE'2013, there was the first session ever dedicated to automatic program repair. In this session, Kim et al. presented PAR, a novel template-based approach for fixing Java bugs. We strongly disagree with key points of this paper. Our critical review has two goals. First, we aim at explaining why we disagree with Kim and colleagues and why the reasons behind this disagreement are important for research on automatic software repair in general. Second, we aim at contributing to the field with a clarification of the essential ideas behind automatic software repair. In particular we discuss the main evaluation criteria of automatic software repair: understandability, correctness and completeness. We show that depending on how one sets up the repair scenario, the evaluation goals may be contradictory. Eventually, we discuss the nature of fix acceptability and its relation to the notion of software correctness.Comment: ICSE 2014, India (2014

    Automatic Repair of Buggy If Conditions and Missing Preconditions with SMT

    Get PDF
    We present Nopol, an approach for automatically repairing buggy if conditions and missing preconditions. As input, it takes a program and a test suite which contains passing test cases modeling the expected behavior of the program and at least one failing test case embodying the bug to be repaired. It consists of collecting data from multiple instrumented test suite executions, transforming this data into a Satisfiability Modulo Theory (SMT) problem, and translating the SMT result -- if there exists one -- into a source code patch. Nopol repairs object oriented code and allows the patches to contain nullness checks as well as specific method calls.Comment: CSTVA'2014, India (2014
    corecore