4,359 research outputs found

    A statistical approach to the inverse problem in magnetoencephalography

    Full text link
    Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic field outside the human head produced by the electrical activity inside the brain. The MEG inverse problem, identifying the location of the electrical sources from the magnetic signal measurements, is ill-posed, that is, there are an infinite number of mathematically correct solutions. Common source localization methods assume the source does not vary with time and do not provide estimates of the variability of the fitted model. Here, we reformulate the MEG inverse problem by considering time-varying locations for the sources and their electrical moments and we model their time evolution using a state space model. Based on our predictive model, we investigate the inverse problem by finding the posterior source distribution given the multiple channels of observations at each time rather than fitting fixed source parameters. Our new model is more realistic than common models and allows us to estimate the variation of the strength, orientation and position. We propose two new Monte Carlo methods based on sequential importance sampling. Unlike the usual MCMC sampling scheme, our new methods work in this situation without needing to tune a high-dimensional transition kernel which has a very high cost. The dimensionality of the unknown parameters is extremely large and the size of the data is even larger. We use Parallel Virtual Machine (PVM) to speed up the computation.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS716 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    05501 Abstracts Collection -- Automatic Performance Analysis

    Get PDF
    From 12.12.05 to 16.12.05, the Dagstuhl Seminar 05501 ``Automatic Performance Analysis\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Parallel delay multiply and sum algorithm for microwave medical imaging using spark big data framework

    Get PDF
    Microwave imaging systems are currently being investigated for breast cancer, brain stroke and neurodegenerative disease detection due to their low cost, portable and wearable nature. At present, commonly used radar-based algorithms for microwave imaging are based on the delay and sum algorithm. These algorithms use ultra-wideband signals to reconstruct a 2D image of the targeted object or region. Delay multiply and sum is an extended version of the delay and sum algorithm. However, it is computationally expensive and time-consuming. In this paper, the delay multiply and sum algorithm is parallelised using a big data framework. The algorithm uses the Spark MapReduce programming model to improve its efficiency. The most computational part of the algorithm is pixel value calculation, where signals need to be multiplied in pairs and summed. The proposed algorithm broadcasts the input data and executes it in parallel in a distributed manner. The Spark-based parallel algorithm is compared with sequential and Python multiprocessing library implementation. The experimental results on both a standalone machine and a high-performance cluster show that Spark significantly accelerates the image reconstruction process without affecting its accuracy
    • 

    corecore