3,982 research outputs found

    Probabilistic Search for Object Segmentation and Recognition

    Get PDF
    The problem of searching for a model-based scene interpretation is analyzed within a probabilistic framework. Object models are formulated as generative models for range data of the scene. A new statistical criterion, the truncated object probability, is introduced to infer an optimal sequence of object hypotheses to be evaluated for their match to the data. The truncated probability is partly determined by prior knowledge of the objects and partly learned from data. Some experiments on sequence quality and object segmentation and recognition from stereo data are presented. The article recovers classic concepts from object recognition (grouping, geometric hashing, alignment) from the probabilistic perspective and adds insight into the optimal ordering of object hypotheses for evaluation. Moreover, it introduces point-relation densities, a key component of the truncated probability, as statistical models of local surface shape

    Probabilistic Search for Object Segmentation and Recognition

    Full text link
    The problem of searching for a model-based scene interpretation is analyzed within a probabilistic framework. Object models are formulated as generative models for range data of the scene. A new statistical criterion, the truncated object probability, is introduced to infer an optimal sequence of object hypotheses to be evaluated for their match to the data. The truncated probability is partly determined by prior knowledge of the objects and partly learned from data. Some experiments on sequence quality and object segmentation and recognition from stereo data are presented. The article recovers classic concepts from object recognition (grouping, geometric hashing, alignment) from the probabilistic perspective and adds insight into the optimal ordering of object hypotheses for evaluation. Moreover, it introduces point-relation densities, a key component of the truncated probability, as statistical models of local surface shape.Comment: 18 pages, 5 figure

    Robust 3-Dimensional Object Recognition using Stereo Vision and Geometric Hashing

    Get PDF
    We propose a technique that combines geometric hashing with stereo vision. The idea is to use the robustness of geometric hashing to spurious data to overcome the correspondence problem, while the stereo vision setup enables direct model matching using the 3-D object models. Furthermore, because the matching technique relies on the relative positions of local features, we should be able to perform robust recognition even with partially occluded objects. We tested this approach with simple geometric objects using a corner point detector. We successfully recognized objects even in scenes where the objects were partially occluded by other objects. For complicated scenes, however, the limited set of model features and required amount of computing time, sometimes became a proble

    Cumulative object categorization in clutter

    Get PDF
    In this paper we present an approach based on scene- or part-graphs for geometrically categorizing touching and occluded objects. We use additive RGBD feature descriptors and hashing of graph configuration parameters for describing the spatial arrangement of constituent parts. The presented experiments quantify that this method outperforms our earlier part-voting and sliding window classification. We evaluated our approach on cluttered scenes, and by using a 3D dataset containing over 15000 Kinect scans of over 100 objects which were grouped into general geometric categories. Additionally, color, geometric, and combined features were compared for categorization tasks

    Deep Sketch Hashing: Fast Free-hand Sketch-Based Image Retrieval

    Full text link
    Free-hand sketch-based image retrieval (SBIR) is a specific cross-view retrieval task, in which queries are abstract and ambiguous sketches while the retrieval database is formed with natural images. Work in this area mainly focuses on extracting representative and shared features for sketches and natural images. However, these can neither cope well with the geometric distortion between sketches and images nor be feasible for large-scale SBIR due to the heavy continuous-valued distance computation. In this paper, we speed up SBIR by introducing a novel binary coding method, named \textbf{Deep Sketch Hashing} (DSH), where a semi-heterogeneous deep architecture is proposed and incorporated into an end-to-end binary coding framework. Specifically, three convolutional neural networks are utilized to encode free-hand sketches, natural images and, especially, the auxiliary sketch-tokens which are adopted as bridges to mitigate the sketch-image geometric distortion. The learned DSH codes can effectively capture the cross-view similarities as well as the intrinsic semantic correlations between different categories. To the best of our knowledge, DSH is the first hashing work specifically designed for category-level SBIR with an end-to-end deep architecture. The proposed DSH is comprehensively evaluated on two large-scale datasets of TU-Berlin Extension and Sketchy, and the experiments consistently show DSH's superior SBIR accuracies over several state-of-the-art methods, while achieving significantly reduced retrieval time and memory footprint.Comment: This paper will appear as a spotlight paper in CVPR201
    corecore