296,880 research outputs found

    Retrieval-based Controllable Molecule Generation

    Full text link
    Generating new molecules with specified chemical and biological properties via generative models has emerged as a promising direction for drug discovery. However, existing methods require extensive training/fine-tuning with a large dataset, often unavailable in real-world generation tasks. In this work, we propose a new retrieval-based framework for controllable molecule generation. We use a small set of exemplar molecules, i.e., those that (partially) satisfy the design criteria, to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria. We design a retrieval mechanism that retrieves and fuses the exemplar molecules with the input molecule, which is trained by a new self-supervised objective that predicts the nearest neighbor of the input molecule. We also propose an iterative refinement process to dynamically update the generated molecules and retrieval database for better generalization. Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning. On various tasks ranging from simple design criteria to a challenging real-world scenario for designing lead compounds that bind to the SARS-CoV-2 main protease, we demonstrate our approach extrapolates well beyond the retrieval database, and achieves better performance and wider applicability than previous methods.Comment: 29 page

    PrefixMol: Target- and Chemistry-aware Molecule Design via Prefix Embedding

    Full text link
    Is there a unified model for generating molecules considering different conditions, such as binding pockets and chemical properties? Although target-aware generative models have made significant advances in drug design, they do not consider chemistry conditions and cannot guarantee the desired chemical properties. Unfortunately, merging the target-aware and chemical-aware models into a unified model to meet customized requirements may lead to the problem of negative transfer. Inspired by the success of multi-task learning in the NLP area, we use prefix embeddings to provide a novel generative model that considers both the targeted pocket's circumstances and a variety of chemical properties. All conditional information is represented as learnable features, which the generative model subsequently employs as a contextual prompt. Experiments show that our model exhibits good controllability in both single and multi-conditional molecular generation. The controllability enables us to outperform previous structure-based drug design methods. More interestingly, we open up the attention mechanism and reveal coupling relationships between conditions, providing guidance for multi-conditional molecule generation

    Mol-CycleGAN - a generative model for molecular optimization

    Get PDF
    Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To augment the compound design process we introduce Mol-CycleGAN - a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results
    corecore