39,343 research outputs found

    Clustering Categorical Response Application to Lung Cancer Problems in Living Scales

    Get PDF
    The study aims to estimate the ability of different grouping techniques on categorical response. We try to find out how well do they work? Do they really find clusters when clusters exist? We use Cancer Problems in Living Scales from the ACS as our categorical data variables and lung cancer survivors as our studying group. Five methods of cluster analysis are examined for their accuracy in clustering on both real CPILS dataset and simulated data. The methods include hierarchical cluster analysis (Ward\u27s method), model-based clustering of raw data, model-based clustering of the factors scores from a maximum likelihood factor analysis, model-based clustering of the predicted scores from independent factor analysis, and the method of latent class clustering. The results from each of the five methods are then compared to actual classifications. The performance of model-based clustering on raw data is poorer than that of the other methods and the latent class clustering method is most appropriate for the specific categorical data examined. These results are discussed and recommendations are made regarding future directions for cluster analysis research

    Analyse de grappe des données de catégories et de séquences étude et application à la prédiction de la faillite personnelle

    Get PDF
    Cluster analysis is one of the most important and useful data mining techniques, and there are many applications of cluster analysis in pattern extraction, information retrieval, summarization, compression and other areas. The focus of this thesis is on clustering categorical and sequence data. Clustering categorical and sequence data is much more challenging than clustering numeric data because there is no inherently meaningful measure of similarity between the categorical objects and sequences. In this thesis, we design novel efficient and effective clustering algorithms for clustering categorical data and sequence respectively, and we perform extensive experiments to demonstrate the superior performance of our proposed algorithm. We also explore the extent to which the use of the proposed clustering algorithms can help to solve the personal bankruptcy prediction problem. Clustering categorical data poses two challenges: defining an inherently meaningful similarity measure, and effectively dealing with clusters which are often embedded in different subspaces. In this thesis, we view the task of clustering categorical data from an optimization perspective and propose a novel objective function. Based on the new formulation, we design a divisive hierarchical clustering algorithm for categorical data, named DHCC. In the bisection procedure of DHCC, the initialization of the splitting is based on multiple correspondence analysis (MCA). We devise a strategy for dealing with the key issue in the divisive approach, namely, when to terminate the splitting process. The proposed algorithm is parameter-free, independent of the order in which the data is processed, scalable to large data sets and capable of seamlessly discovering clusters embedded in subspaces. The prior knowledge about the data can be incorporated into the clustering process, which is known as semi-supervised clustering, to produce considerable improvement in learning accuracy. In this thesis, we view semi-supervised clustering of categorical data as an optimization problem with extra instance-level constraints, and propose a systematic and fully automated approach to guide the optimization process to a better solution in terms of satisfying the constraints, which would also be beneficial to the unconstrained objects. The proposed semi-supervised divisive hierarchical clustering algorithm for categorical data, named SDHCC, is parameter-free, fully automatic and effective in taking advantage of instance-level constraint background knowledge to improve the quality of the resultant dendrogram. Many existing sequence clustering algorithms rely on a pair-wise measure of similarity between sequences. Usually, such a measure is effective if there are significantly informative patterns in the sequences. However, it is difficult to define a meaningful pair-wise similarity measure if sequences are short and contain noise. In this thesis, we circumvent the obstacle of defining the pairwise similarity by defining the similarity between an individual sequence and a set of sequences. Based on the new similarity measure, which is based on the conditional probability distribution (CPD) model, we design a novel model-based K -means clustering algorithm for sequence clustering, which works in a similar way to the traditional K -means on vectorial data. Finally, we develop a personal bankruptcy prediction system whose predictors are mainly the bankruptcy features discovered by the clustering techniques proposed in this thesis. The mined bankruptcy features are represented in low-dimensional vector space. From the new feature space, which can be extended with some existing prediction-capable features (e.g., credit score), a support vector machine (SVM) classifier is built to combine these mined and already existing features. Our system is readily comprehensible and demonstrates promising prediction performance

    Bibliographic Analysis on Research Publications using Authors, Categorical Labels and the Citation Network

    Full text link
    Bibliographic analysis considers the author's research areas, the citation network and the paper content among other things. In this paper, we combine these three in a topic model that produces a bibliographic model of authors, topics and documents, using a nonparametric extension of a combination of the Poisson mixed-topic link model and the author-topic model. This gives rise to the Citation Network Topic Model (CNTM). We propose a novel and efficient inference algorithm for the CNTM to explore subsets of research publications from CiteSeerX. The publication datasets are organised into three corpora, totalling to about 168k publications with about 62k authors. The queried datasets are made available online. In three publicly available corpora in addition to the queried datasets, our proposed model demonstrates an improved performance in both model fitting and document clustering, compared to several baselines. Moreover, our model allows extraction of additional useful knowledge from the corpora, such as the visualisation of the author-topics network. Additionally, we propose a simple method to incorporate supervision into topic modelling to achieve further improvement on the clustering task.Comment: Preprint for Journal Machine Learnin

    Data Clustering: Algorithms and Its Applications

    Get PDF
    Data is useless if information or knowledge that can be used for further reasoning cannot be inferred from it. Cluster analysis, based on some criteria, shares data into important, practical or both categories (clusters) based on shared common characteristics. In research, clustering and classification have been used to analyze data, in the field of machine learning, bioinformatics, statistics, pattern recognition to mention a few. Different methods of clustering include Partitioning (K-means), Hierarchical (AGNES), Density-based (DBSCAN), Grid-based (STING), Soft clustering (FANNY), Model-based (SOM) and Ensemble clustering. Challenges and problems in clustering arise from large datasets, misinterpretation of results and efficiency/performance of clustering algorithms, which is necessary for choosing clustering algorithms. In this paper, application of data clustering was systematically discussed in view of the characteristics of the different clustering techniques that make them better suited or biased when applied to several types of data, such as uncertain data, multimedia data, graph data, biological data, stream data, text data, time series data, categorical data and big data. The suitability of the available clustering algorithms to different application areas was presented. Also investigated were some existing cluster validity methods used to evaluate the goodness of the clusters produced by the clustering algorithms
    • …
    corecore