5,113 research outputs found

    Model-based encoding parameter optimization for 3D point cloud compression

    Get PDF
    Rate-distortion optimal 3D point cloud compression is very challenging due to the irregular structure of 3D point clouds. For a popular 3D point cloud codec that uses octrees for geometry compression and JPEG for color compression, we first find analytical models that describe the relationship between the encoding parameters and the bitrate and distortion, respectively. We then use our models to formulate the rate-distortion optimization problem as a constrained convex optimization problem and apply an interior point method to solve it. Experimental results for six 3D point clouds show that our technique gives similar results to exhaustive search at only about 1.57% of its computational cost

    Learning quadrangulated patches for 3D shape parameterization and completion

    Full text link
    We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.Comment: To be presented at International Conference on 3D Vision 2017, 201

    Deep Generative Modeling of LiDAR Data

    Get PDF
    Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored on many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative dataComment: Presented at IROS 201

    Rate-Distortion Modeling for Bit Rate Constrained Point Cloud Compression

    Full text link
    As being one of the main representation formats of 3D real world and well-suited for virtual reality and augmented reality applications, point clouds have gained a lot of popularity. In order to reduce the huge amount of data, a considerable amount of research on point cloud compression has been done. However, given a target bit rate, how to properly choose the color and geometry quantization parameters for compressing point clouds is still an open issue. In this paper, we propose a rate-distortion model based quantization parameter selection scheme for bit rate constrained point cloud compression. Firstly, to overcome the measurement uncertainty in evaluating the distortion of the point clouds, we propose a unified model to combine the geometry distortion and color distortion. In this model, we take into account the correlation between geometry and color variables of point clouds and derive a dimensionless quantity to represent the overall quality degradation. Then, we derive the relationships of overall distortion and bit rate with the quantization parameters. Finally, we formulate the bit rate constrained point cloud compression as a constrained minimization problem using the derived polynomial models and deduce the solution via an iterative numerical method. Experimental results show that the proposed algorithm can achieve optimal decoded point cloud quality at various target bit rates, and substantially outperform the video-rate-distortion model based point cloud compression scheme.Comment: Accepted to IEEE Transactions on Circuits and Systems for Video Technolog

    Lightweight super resolution network for point cloud geometry compression

    Full text link
    This paper presents an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network. The proposed method involves decomposing a point cloud into a base point cloud and the interpolation patterns for reconstructing the original point cloud. While the base point cloud can be efficiently compressed using any lossless codec, such as Geometry-based Point Cloud Compression, a distinct strategy is employed for handling the interpolation patterns. Rather than directly compressing the interpolation patterns, a lightweight super-resolution network is utilized to learn this information through overfitting. Subsequently, the network parameter is transmitted to assist in point cloud reconstruction at the decoder side. Notably, our approach differentiates itself from lookup table-based methods, allowing us to obtain more accurate interpolation patterns by accessing a broader range of neighboring voxels at an acceptable computational cost. Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.Comment: 10 pages, 3 figures, 2 tables, and 27 reference
    • …
    corecore