316 research outputs found

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Towards run-time monitoring of web services conformance to business-level agreements

    No full text
    Web service behaviour is currently specified in a mixture of ways, often using methods that are only partially complete. These range from static functional specifications, based on interfaces in WSDL and preconditions in RIF, to business process simulations using executable process-based models such as BPEL, to detailed quality of service (QoS) agreements laid down in a service level agreement (SLA). This paper recognises that something similar to a SLA is required at the higher business level to govern the contract between service producers, brokers and consumers. We call this a business level agreement (BLA) and within this framework, seek to unify disparate aspects of functional specification, QoS and run-time verification. We propose that the method for validating a web service with respect to its advertised BLA should be based on run-time service monitoring. This is a position paper towards defining these goals

    Sistema de teste auto-adaptativo baseado em modelo para SOA dinâmico

    Get PDF
    Orientadores: Eliane Martins, Andrea CeccarelliDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Arquitetura orientada a serviços (SOA) é um padrão de design popular para implemen- tação de serviços web devido à interoperabilidade, escalabilidade e reuso de soluções de software que promove. Os serviços que usam essa arquitetura precisam operar em um am- biente altamente dinâmico, entretanto quanto mais a complexidade desses serviços cresce menos os métodos tradicionais de validação se mostram viáveis. Aplicações baseadas em arquitetura orientada a serviços podem evoluir e mudar du- rante a execução. Por conta disso testes offline não asseguram completamente o compor- tamento correto de um sistema em tempo de execução. Por essa razão, a necessidade de tecnicas diferentes para validar o comportamento adequado de uma aplicação SOA durante o seu ciclo de vida são necessárias, por isso testes online executados durante o funcionamento serão usados nesse projeto. O objetivo do projeto é de aplicar técnicas de testes baseados em modelos para gerar e executar casos de testes relevantes em aplicações SOA durante seu tempo de execu- ção. Para alcançar esse objetivo uma estrura de teste online autoadaptativa baseada em modelos foi idealizada. Testes baseados em modelos podem ser gerados de maneira offline ou online. Nos testes offline, os casos de teste são gerados antes do sistema entrar em execução. Já nos testes online, os casos de teste são gerados e aplicados concomitantemente, e as saídas produzidas pela aplicação em teste definem o próximo passo a ser realizado. Quando uma evolução é detectada em um serviço monitorado uma atualização no modelo da aplicação alvo é executada, seguido pela geração e execução de casos de testes online. Mais precisamente, quatro componentes foram integrados em um circuito autoadap- tativo: um serviço de monitoramento, um serviço de criação de modelos, um serviço de geração de casos de teste baseado em modelos e um serviço de teste. As caracteristicas da estrutura de teste foram testadas em três cenários que foram executados em uma aplicação SOA orquestrada por BPEL, chamada jSeduite. Este trabalho é um esforço para entender as restrições e limitações de teste de soft- ware para aplicações SOA, e apresenta análises e soluções para alguns dos problemas encontrados durante a pesquisaAbstract: Service Oriented Architecture (SOA) is a popular design pattern to build web services be- cause of the interoperability, scalability, and reuse of software solutions that it promotes. The services using this architecture need to operate in a highly dynamic environment, but as the complexity of these services grows, traditional validation processes become less feasible. SOA applications can evolve and change during their execution, and offline tests do not completely assure the correct behavior of the system during its execution. There- fore there is a need of techniques to validate the proper behaviour of SOA applications during the SOA lifecycle. Because of that, in this project online testing will be used. The project goal is to employ model-based testing techniques to generate and execute relevant test cases to SOA applications during runtime. In order to achieve this goal a self-adaptive model-based online testing framework was designed. Tests based on models can be generated offline and online. Offline test are generated before the system execution. Online tests are generated and performed concomitantly, and the output produced by the application under test defines the next step to be performed. when our solution detects that a monitored service evolves, the model of the target service is updated, and online test case generation and execution is performed. More specifically, four components were integrated in a self-adaptive loop: a mon- itoring service, a model generator service, a model based testing service and a testing platform. The testing framework had its features tested in three scenarios that were performed in a SOA application orchestrated by BPEL, called jSeduite. This work is an effort to understand the constraints and limitations of the software testing on SOA applications, and present analysis and solutions to some of the problems found during the researchMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE

    Analysis and Verification of Service Interaction Protocols - A Brief Survey

    Get PDF
    Modeling and analysis of interactions among services is a crucial issue in Service-Oriented Computing. Composing Web services is a complicated task which requires techniques and tools to verify that the new system will behave correctly. In this paper, we first overview some formal models proposed in the literature to describe services. Second, we give a brief survey of verification techniques that can be used to analyse services and their interaction. Last, we focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    FLACOS’08 Workshop proceedings

    Get PDF
    The 2nd Workshop on Formal Languages and Analysis of Contract-Oriented Software (FLACOS’08) is held in Malta. The aim of the workshop is to bring together researchers and practitioners working on language-based solutions to contract-oriented software development. The workshop is partially funded by the Nordunet3 project “COSoDIS” (Contract-Oriented Software Development for Internet Services) and it attracted 25 participants. The program consists of 4 regular papers and 10 invited participant presentations

    Verifying responsiveness for open systems by means of conformance checking

    Get PDF
    corecore